Burak Senkus, Berkay Yaman, Hüseyin Aydin, M. Soyturk
{"title":"高性能多智能体位置反馈框架的实现","authors":"Burak Senkus, Berkay Yaman, Hüseyin Aydin, M. Soyturk","doi":"10.23919/mikon54314.2022.9924764","DOIUrl":null,"url":null,"abstract":"Many devices and systems perform a specific function by working with position data obtained from GPS/GNSS receivers in NMEA 0183 or a similar format. In the testing phase of these devices and systems, position data is usually artificially produced and fed to the systems, so that systems can be tested based on variable positioning information. This approach enables the testing of many different cases/scenarios (using different position information) on the device/system in a short time and at a low cost. However, the position data feeders/generators used in these tests and the device are tested as a conjugate pair. The interoperability test of these devices/systems that have their own position generator cannot be made due to synchronization problems. In this study, a framework that generates positions is proposed to perform integrated testing of many interactive systems in a performant and realistic way. In the performance tests of this proposed and developed framework, low resource usage was observed. According to the test results, position data can be fed to more than 1000 clients in a new generation high-end system that will run this program alone.","PeriodicalId":177285,"journal":{"name":"2022 24th International Microwave and Radar Conference (MIKON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of High Performance Multi-Agent Position Feeding Framework\",\"authors\":\"Burak Senkus, Berkay Yaman, Hüseyin Aydin, M. Soyturk\",\"doi\":\"10.23919/mikon54314.2022.9924764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many devices and systems perform a specific function by working with position data obtained from GPS/GNSS receivers in NMEA 0183 or a similar format. In the testing phase of these devices and systems, position data is usually artificially produced and fed to the systems, so that systems can be tested based on variable positioning information. This approach enables the testing of many different cases/scenarios (using different position information) on the device/system in a short time and at a low cost. However, the position data feeders/generators used in these tests and the device are tested as a conjugate pair. The interoperability test of these devices/systems that have their own position generator cannot be made due to synchronization problems. In this study, a framework that generates positions is proposed to perform integrated testing of many interactive systems in a performant and realistic way. In the performance tests of this proposed and developed framework, low resource usage was observed. According to the test results, position data can be fed to more than 1000 clients in a new generation high-end system that will run this program alone.\",\"PeriodicalId\":177285,\"journal\":{\"name\":\"2022 24th International Microwave and Radar Conference (MIKON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Microwave and Radar Conference (MIKON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/mikon54314.2022.9924764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Microwave and Radar Conference (MIKON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/mikon54314.2022.9924764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of High Performance Multi-Agent Position Feeding Framework
Many devices and systems perform a specific function by working with position data obtained from GPS/GNSS receivers in NMEA 0183 or a similar format. In the testing phase of these devices and systems, position data is usually artificially produced and fed to the systems, so that systems can be tested based on variable positioning information. This approach enables the testing of many different cases/scenarios (using different position information) on the device/system in a short time and at a low cost. However, the position data feeders/generators used in these tests and the device are tested as a conjugate pair. The interoperability test of these devices/systems that have their own position generator cannot be made due to synchronization problems. In this study, a framework that generates positions is proposed to perform integrated testing of many interactive systems in a performant and realistic way. In the performance tests of this proposed and developed framework, low resource usage was observed. According to the test results, position data can be fed to more than 1000 clients in a new generation high-end system that will run this program alone.