G. Parthasarathy, Madhu K. Iyer, K. Cheng, Li-C. Wang
{"title":"bdd、BMC和用于模型检查的顺序SAT的比较","authors":"G. Parthasarathy, Madhu K. Iyer, K. Cheng, Li-C. Wang","doi":"10.1109/HLDVT.2003.1252490","DOIUrl":null,"url":null,"abstract":"BDD-based model checking and bounded model checking (BMC) are the main techniques currently used in formal verification. In general, there are robustness issues in SAT-based versus BDD-based model checking. The research reported in this paper attempts to analyze the asymptotic run-time behavior of modern BDD-based and SAT based techniques for model checking to determine the circuit characteristics which lead to worst-case behavior in these approaches. We show evidence for a run-time characterization based on sequential correlation and clause density. We demonstrate that it is possible to predict the worst-case behavior of BMC based on these characterizations. This leads to some interesting insights into the behavior of these techniques on a variety of example circuits.","PeriodicalId":344813,"journal":{"name":"Eighth IEEE International High-Level Design Validation and Test Workshop","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A comparison of BDDs, BMC, and sequential SAT for model checking\",\"authors\":\"G. Parthasarathy, Madhu K. Iyer, K. Cheng, Li-C. Wang\",\"doi\":\"10.1109/HLDVT.2003.1252490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BDD-based model checking and bounded model checking (BMC) are the main techniques currently used in formal verification. In general, there are robustness issues in SAT-based versus BDD-based model checking. The research reported in this paper attempts to analyze the asymptotic run-time behavior of modern BDD-based and SAT based techniques for model checking to determine the circuit characteristics which lead to worst-case behavior in these approaches. We show evidence for a run-time characterization based on sequential correlation and clause density. We demonstrate that it is possible to predict the worst-case behavior of BMC based on these characterizations. This leads to some interesting insights into the behavior of these techniques on a variety of example circuits.\",\"PeriodicalId\":344813,\"journal\":{\"name\":\"Eighth IEEE International High-Level Design Validation and Test Workshop\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth IEEE International High-Level Design Validation and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2003.1252490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth IEEE International High-Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2003.1252490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of BDDs, BMC, and sequential SAT for model checking
BDD-based model checking and bounded model checking (BMC) are the main techniques currently used in formal verification. In general, there are robustness issues in SAT-based versus BDD-based model checking. The research reported in this paper attempts to analyze the asymptotic run-time behavior of modern BDD-based and SAT based techniques for model checking to determine the circuit characteristics which lead to worst-case behavior in these approaches. We show evidence for a run-time characterization based on sequential correlation and clause density. We demonstrate that it is possible to predict the worst-case behavior of BMC based on these characterizations. This leads to some interesting insights into the behavior of these techniques on a variety of example circuits.