从FPGA直接访问虚拟内存,实现高生产率异构计算

Ho-Cheung Ng, Yuk-Ming Choi, Hayden Kwok-Hay So
{"title":"从FPGA直接访问虚拟内存,实现高生产率异构计算","authors":"Ho-Cheung Ng, Yuk-Ming Choi, Hayden Kwok-Hay So","doi":"10.1109/FPT.2013.6718414","DOIUrl":null,"url":null,"abstract":"Heterogeneous computing utilizing both CPU and FPGA requires access to data in the main memory from both devices. While a typical system relies on software executing on the CPU to orchestrate all data movements between the FPGA and the main memory, our demo presents a complementary FPGA-centric approach that allows gateware to directly access the virtual memory space as part of the executing process without involving the CPU. A caching address translation buffer was implemented alongside the user FPGA gateware to provide runtime mapping between virtual and physical memory addresses. The system was implemented on a commercial off-the-shelf FPGA add-on card to demonstrate the viability of such approach in low-cost systems. Experiment demonstrated reasonable performance improvement when compared to a typical software-centric implementation; while the number of context switches between FPGA and CPU in both kernel and user mode was significantly reduced, freeing the CPU for other concurrent user tasks.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Direct virtual memory access from FPGA for high-productivity heterogeneous computing\",\"authors\":\"Ho-Cheung Ng, Yuk-Ming Choi, Hayden Kwok-Hay So\",\"doi\":\"10.1109/FPT.2013.6718414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous computing utilizing both CPU and FPGA requires access to data in the main memory from both devices. While a typical system relies on software executing on the CPU to orchestrate all data movements between the FPGA and the main memory, our demo presents a complementary FPGA-centric approach that allows gateware to directly access the virtual memory space as part of the executing process without involving the CPU. A caching address translation buffer was implemented alongside the user FPGA gateware to provide runtime mapping between virtual and physical memory addresses. The system was implemented on a commercial off-the-shelf FPGA add-on card to demonstrate the viability of such approach in low-cost systems. Experiment demonstrated reasonable performance improvement when compared to a typical software-centric implementation; while the number of context switches between FPGA and CPU in both kernel and user mode was significantly reduced, freeing the CPU for other concurrent user tasks.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用CPU和FPGA的异构计算需要从这两个设备访问主存储器中的数据。虽然典型的系统依赖于在CPU上执行的软件来协调FPGA和主存储器之间的所有数据移动,但我们的演示展示了一种互补的以FPGA为中心的方法,该方法允许网关直接访问虚拟内存空间,作为执行过程的一部分,而无需涉及CPU。与用户FPGA网关一起实现了一个缓存地址转换缓冲区,以提供虚拟和物理内存地址之间的运行时映射。该系统在商用现成的FPGA附加卡上实现,以证明这种方法在低成本系统中的可行性。与典型的以软件为中心的实现相比,实验证明了合理的性能改进;而在内核模式和用户模式下FPGA和CPU之间的上下文切换数量都大大减少了,从而为其他并发用户任务释放了CPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct virtual memory access from FPGA for high-productivity heterogeneous computing
Heterogeneous computing utilizing both CPU and FPGA requires access to data in the main memory from both devices. While a typical system relies on software executing on the CPU to orchestrate all data movements between the FPGA and the main memory, our demo presents a complementary FPGA-centric approach that allows gateware to directly access the virtual memory space as part of the executing process without involving the CPU. A caching address translation buffer was implemented alongside the user FPGA gateware to provide runtime mapping between virtual and physical memory addresses. The system was implemented on a commercial off-the-shelf FPGA add-on card to demonstrate the viability of such approach in low-cost systems. Experiment demonstrated reasonable performance improvement when compared to a typical software-centric implementation; while the number of context switches between FPGA and CPU in both kernel and user mode was significantly reduced, freeing the CPU for other concurrent user tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信