{"title":"脑电图图表示的神经网络分析","authors":"A. Bragin, V. Spitsyn","doi":"10.51130/graphicon-2020-2-4-52","DOIUrl":null,"url":null,"abstract":"The article is devoted to the problem of recognition of motor imagery based on electroencephalogram (EEG) signals, which is associated with many difficulties, such as the physical and mental state of a person, measurement accuracy, etc. Artificial neural networks are a good tool in solving this class of problems. Electroencephalograms are time signals, Gramian Angular Fields (GAF), Markov Transition Field (MTF) and Hilbert space-filling curves transformations are used to represent time series as images. The paper shows the possibility of using GAF, MTF and Hilbert space-filling curves EEG signal transforms for recognizing motor patterns, which is further applicable, for example, in building a brain-computer interface.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Analysis of Electroencephalograms Graphical Representation\",\"authors\":\"A. Bragin, V. Spitsyn\",\"doi\":\"10.51130/graphicon-2020-2-4-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the problem of recognition of motor imagery based on electroencephalogram (EEG) signals, which is associated with many difficulties, such as the physical and mental state of a person, measurement accuracy, etc. Artificial neural networks are a good tool in solving this class of problems. Electroencephalograms are time signals, Gramian Angular Fields (GAF), Markov Transition Field (MTF) and Hilbert space-filling curves transformations are used to represent time series as images. The paper shows the possibility of using GAF, MTF and Hilbert space-filling curves EEG signal transforms for recognizing motor patterns, which is further applicable, for example, in building a brain-computer interface.\",\"PeriodicalId\":344054,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51130/graphicon-2020-2-4-52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-4-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Network Analysis of Electroencephalograms Graphical Representation
The article is devoted to the problem of recognition of motor imagery based on electroencephalogram (EEG) signals, which is associated with many difficulties, such as the physical and mental state of a person, measurement accuracy, etc. Artificial neural networks are a good tool in solving this class of problems. Electroencephalograms are time signals, Gramian Angular Fields (GAF), Markov Transition Field (MTF) and Hilbert space-filling curves transformations are used to represent time series as images. The paper shows the possibility of using GAF, MTF and Hilbert space-filling curves EEG signal transforms for recognizing motor patterns, which is further applicable, for example, in building a brain-computer interface.