电动汽车的功耗特性、建模与估计

N. Chang, Donkyu Baek, Jeongmin Hong
{"title":"电动汽车的功耗特性、建模与估计","authors":"N. Chang, Donkyu Baek, Jeongmin Hong","doi":"10.1109/ICCAD.2014.7001349","DOIUrl":null,"url":null,"abstract":"Rapid electric vehicle (EV) penetration gives a threatening challenge in electric energy generation. An 1,814 kg curb weight full electric vehicle driving 18,129 km/year consumes electricity energy equivalent to 74% of the total residential electricity use per person in the US. This implies that 27% more nationwide electricity generation is needed when 70% of passenger vehicles are replaced with EVs. This paper is the first step toward systematic EV design-time and runtime optimization. We introduce instantaneous power consumption modeling of an EV by the curb weights, speed, acceleration, road slope, passenger and cargo weights, motor capacity, and so on, as a battery discharge model. The model also considers the onboard charger, regenerative braking and so on, as a battery charge model. To insure model fidelity, we fabricate a lightweight custom EV, perform extensive measurement, and derive model coefficients using multivariable regression analysis. We estimate the EV instantaneous power consumption of a given speed and route profiles and verify the estimation fidelity with a real test run data.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Power consumption characterization, modeling and estimation of electric vehicles\",\"authors\":\"N. Chang, Donkyu Baek, Jeongmin Hong\",\"doi\":\"10.1109/ICCAD.2014.7001349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid electric vehicle (EV) penetration gives a threatening challenge in electric energy generation. An 1,814 kg curb weight full electric vehicle driving 18,129 km/year consumes electricity energy equivalent to 74% of the total residential electricity use per person in the US. This implies that 27% more nationwide electricity generation is needed when 70% of passenger vehicles are replaced with EVs. This paper is the first step toward systematic EV design-time and runtime optimization. We introduce instantaneous power consumption modeling of an EV by the curb weights, speed, acceleration, road slope, passenger and cargo weights, motor capacity, and so on, as a battery discharge model. The model also considers the onboard charger, regenerative braking and so on, as a battery charge model. To insure model fidelity, we fabricate a lightweight custom EV, perform extensive measurement, and derive model coefficients using multivariable regression analysis. We estimate the EV instantaneous power consumption of a given speed and route profiles and verify the estimation fidelity with a real test run data.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

电动汽车的快速普及给电力生产带来了严峻的挑战。一辆整车重量为1814公斤、行驶18129公里/年的纯电动汽车所消耗的电能相当于美国人均住宅总用电量的74%。这意味着,如果70%的乘用车被电动汽车取代,全国的发电量需要增加27%。本文是实现电动汽车系统设计时和运行时优化的第一步。我们通过路边重量、速度、加速度、道路坡度、客货重量、电机容量等引入电动汽车的瞬时功耗模型,作为电池放电模型。该模型还考虑了车载充电器、再生制动等作为电池充电模型。为了确保模型保真度,我们制造了一个轻量级的定制EV,进行了广泛的测量,并使用多变量回归分析得出模型系数。我们估计了给定速度和路线轮廓下的电动汽车瞬时功耗,并用实际测试运行数据验证了估计的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power consumption characterization, modeling and estimation of electric vehicles
Rapid electric vehicle (EV) penetration gives a threatening challenge in electric energy generation. An 1,814 kg curb weight full electric vehicle driving 18,129 km/year consumes electricity energy equivalent to 74% of the total residential electricity use per person in the US. This implies that 27% more nationwide electricity generation is needed when 70% of passenger vehicles are replaced with EVs. This paper is the first step toward systematic EV design-time and runtime optimization. We introduce instantaneous power consumption modeling of an EV by the curb weights, speed, acceleration, road slope, passenger and cargo weights, motor capacity, and so on, as a battery discharge model. The model also considers the onboard charger, regenerative braking and so on, as a battery charge model. To insure model fidelity, we fabricate a lightweight custom EV, perform extensive measurement, and derive model coefficients using multivariable regression analysis. We estimate the EV instantaneous power consumption of a given speed and route profiles and verify the estimation fidelity with a real test run data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信