基于遗传算法和混合遗传算法的异步电机效率优化

Yong Tai, Zhaomiao Liu, Huajin Yu, Jia Liu
{"title":"基于遗传算法和混合遗传算法的异步电机效率优化","authors":"Yong Tai, Zhaomiao Liu, Huajin Yu, Jia Liu","doi":"10.1109/ICEMS.2011.6073854","DOIUrl":null,"url":null,"abstract":"Equivalent circuit model of induction motors was established and the formulas of power losses were given. Motor efficiency was optimized by Genetic Algorithm(GA) and Hybrid Genetic Algorithm(HGA). Power factor, breakdown torque ratio, locked-rotor torque ratio and locked-rotor current ratio were regarded as constraints and the optimal result is satisfying. Genetic Algorithm and Pattern Search Algorithm are integrated into a composite algorithm-Hybrid Genetic Algorithm. Motor efficiency rises further through Hybrid Genetic Algorithm.","PeriodicalId":101507,"journal":{"name":"2011 International Conference on Electrical Machines and Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficiency optimization of induction motors using genetic algorithm and Hybrid Genetic Algorithm\",\"authors\":\"Yong Tai, Zhaomiao Liu, Huajin Yu, Jia Liu\",\"doi\":\"10.1109/ICEMS.2011.6073854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equivalent circuit model of induction motors was established and the formulas of power losses were given. Motor efficiency was optimized by Genetic Algorithm(GA) and Hybrid Genetic Algorithm(HGA). Power factor, breakdown torque ratio, locked-rotor torque ratio and locked-rotor current ratio were regarded as constraints and the optimal result is satisfying. Genetic Algorithm and Pattern Search Algorithm are integrated into a composite algorithm-Hybrid Genetic Algorithm. Motor efficiency rises further through Hybrid Genetic Algorithm.\",\"PeriodicalId\":101507,\"journal\":{\"name\":\"2011 International Conference on Electrical Machines and Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Electrical Machines and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMS.2011.6073854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMS.2011.6073854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

建立了感应电动机的等效电路模型,给出了功率损耗计算公式。采用遗传算法(GA)和混合遗传算法(HGA)优化电机效率。以功率因数、击穿转矩比、锁住转子转矩比和锁住转子电流比为约束条件,优化结果令人满意。将遗传算法和模式搜索算法集成为一种复合算法——混合遗传算法。通过混合遗传算法进一步提高电机效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency optimization of induction motors using genetic algorithm and Hybrid Genetic Algorithm
Equivalent circuit model of induction motors was established and the formulas of power losses were given. Motor efficiency was optimized by Genetic Algorithm(GA) and Hybrid Genetic Algorithm(HGA). Power factor, breakdown torque ratio, locked-rotor torque ratio and locked-rotor current ratio were regarded as constraints and the optimal result is satisfying. Genetic Algorithm and Pattern Search Algorithm are integrated into a composite algorithm-Hybrid Genetic Algorithm. Motor efficiency rises further through Hybrid Genetic Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信