基于极值区域和Corner-HOG特征的场景文本定位

Yuanyuan Feng, Yonghong Song, Yuanlin Zhang
{"title":"基于极值区域和Corner-HOG特征的场景文本定位","authors":"Yuanyuan Feng, Yonghong Song, Yuanlin Zhang","doi":"10.1109/ROBIO.2015.7418882","DOIUrl":null,"url":null,"abstract":"This paper presents a text detection method based on Extremal Regions (ERs) and Corner-HOG feature. Local Histogram of Oriented Gradient (HOG) extracted around corners (Corner-HOG) is used to effectively prune the non-text components in the component tree. Experimental results show that the Corner-HOG based pruning method can discard an average of 83.06% of all ERs in an image while preserving a recall of 90.51% of the text components. The remaining ERs are then grouped into text lines and candidate text lines are verified using black-white transition feature and the covariance descriptor of HOG. Experimental results on the 2011 Robust Reading Competition dataset show that the proposed text detection method provides promising performance.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Scene text localization using extremal regions and Corner-HOG feature\",\"authors\":\"Yuanyuan Feng, Yonghong Song, Yuanlin Zhang\",\"doi\":\"10.1109/ROBIO.2015.7418882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a text detection method based on Extremal Regions (ERs) and Corner-HOG feature. Local Histogram of Oriented Gradient (HOG) extracted around corners (Corner-HOG) is used to effectively prune the non-text components in the component tree. Experimental results show that the Corner-HOG based pruning method can discard an average of 83.06% of all ERs in an image while preserving a recall of 90.51% of the text components. The remaining ERs are then grouped into text lines and candidate text lines are verified using black-white transition feature and the covariance descriptor of HOG. Experimental results on the 2011 Robust Reading Competition dataset show that the proposed text detection method provides promising performance.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7418882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7418882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于极值区域和角hog特征的文本检测方法。利用拐角提取的局部定向梯度直方图(HOG) (Corner-HOG)对组件树中的非文本组件进行有效的剪枝。实验结果表明,基于Corner-HOG的剪枝方法可以平均丢弃图像中83.06%的er,同时保留90.51%的文本成分查全率。然后将剩余的er分组为文本行,并使用黑白过渡特征和HOG协方差描述符对候选文本行进行验证。在2011年鲁棒阅读大赛数据集上的实验结果表明,本文提出的文本检测方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scene text localization using extremal regions and Corner-HOG feature
This paper presents a text detection method based on Extremal Regions (ERs) and Corner-HOG feature. Local Histogram of Oriented Gradient (HOG) extracted around corners (Corner-HOG) is used to effectively prune the non-text components in the component tree. Experimental results show that the Corner-HOG based pruning method can discard an average of 83.06% of all ERs in an image while preserving a recall of 90.51% of the text components. The remaining ERs are then grouped into text lines and candidate text lines are verified using black-white transition feature and the covariance descriptor of HOG. Experimental results on the 2011 Robust Reading Competition dataset show that the proposed text detection method provides promising performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信