运用朴素贝叶斯分类器对情感进行分析

Ernianti Hasibuan, Elmo Allistair Heriyanto
{"title":"运用朴素贝叶斯分类器对情感进行分析","authors":"Ernianti Hasibuan, Elmo Allistair Heriyanto","doi":"10.56127/jts.v1i3.434","DOIUrl":null,"url":null,"abstract":"Sentiment analysis or opinion mining is a study that analyzes people's opinions, thoughts and impressions on various topics, subjects, and products or services. The development of social media makes public opinion data available which can be found easily on the internet. The large volume of data causes the need for an automatic system to classify the data based on different aspects because classifying data manually is a time-consuming process. In this study, sentiment analysis will be carried out with a machine learning-based approach using the Naive Bayes algorithm using user review data on the Amazon Shopping application on the Google Play Store. The classification results using the four Naive Bayes algorithms produce an average accuracy of 82.15%, precision of 72.25%, recall of 83.49%, and f1-score of 77.41%. Multinomial NB produces the best accuracy among the four Naive Bayes algorithms used, which is 86.74%. The values of precision, recall, and f1-score are 78.82%, 85.90%, and 82.21%, respectively.","PeriodicalId":161835,"journal":{"name":"Jurnal Teknik dan Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER\",\"authors\":\"Ernianti Hasibuan, Elmo Allistair Heriyanto\",\"doi\":\"10.56127/jts.v1i3.434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis or opinion mining is a study that analyzes people's opinions, thoughts and impressions on various topics, subjects, and products or services. The development of social media makes public opinion data available which can be found easily on the internet. The large volume of data causes the need for an automatic system to classify the data based on different aspects because classifying data manually is a time-consuming process. In this study, sentiment analysis will be carried out with a machine learning-based approach using the Naive Bayes algorithm using user review data on the Amazon Shopping application on the Google Play Store. The classification results using the four Naive Bayes algorithms produce an average accuracy of 82.15%, precision of 72.25%, recall of 83.49%, and f1-score of 77.41%. Multinomial NB produces the best accuracy among the four Naive Bayes algorithms used, which is 86.74%. The values of precision, recall, and f1-score are 78.82%, 85.90%, and 82.21%, respectively.\",\"PeriodicalId\":161835,\"journal\":{\"name\":\"Jurnal Teknik dan Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknik dan Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56127/jts.v1i3.434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik dan Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56127/jts.v1i3.434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析或意见挖掘是一项分析人们对各种主题、主题、产品或服务的意见、想法和印象的研究。社会媒体的发展使得民意数据可以很容易地在互联网上找到。由于人工对数据进行分类是一个耗时的过程,因此由于数据量大,需要一个基于不同方面的自动系统对数据进行分类。在本研究中,情感分析将使用基于机器学习的方法,使用朴素贝叶斯算法,使用Google Play Store上亚马逊购物应用程序的用户评论数据进行。四种朴素贝叶斯算法的分类结果平均准确率为82.15%,精密度为72.25%,召回率为83.49%,f1得分为77.41%。在使用的四种朴素贝叶斯算法中,多项式NB的准确率最高,为86.74%。查准率为78.82%,查全率为85.90%,查全率为82.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER
Sentiment analysis or opinion mining is a study that analyzes people's opinions, thoughts and impressions on various topics, subjects, and products or services. The development of social media makes public opinion data available which can be found easily on the internet. The large volume of data causes the need for an automatic system to classify the data based on different aspects because classifying data manually is a time-consuming process. In this study, sentiment analysis will be carried out with a machine learning-based approach using the Naive Bayes algorithm using user review data on the Amazon Shopping application on the Google Play Store. The classification results using the four Naive Bayes algorithms produce an average accuracy of 82.15%, precision of 72.25%, recall of 83.49%, and f1-score of 77.41%. Multinomial NB produces the best accuracy among the four Naive Bayes algorithms used, which is 86.74%. The values of precision, recall, and f1-score are 78.82%, 85.90%, and 82.21%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信