基于n个最感兴趣项集挖掘的高维数据流聚类

F. Ao, Jing Du, Jingyi Yu, Fuzhi Wang, Qiong Wang
{"title":"基于n个最感兴趣项集挖掘的高维数据流聚类","authors":"F. Ao, Jing Du, Jingyi Yu, Fuzhi Wang, Qiong Wang","doi":"10.1109/FSKD.2013.6816232","DOIUrl":null,"url":null,"abstract":"The key for clustering high dimensional data streams is finding dense units. Traditional methods apply frequent itemsets mining for finding dense units. Since these methods are not able to differentiate the density of units in subspaces with different dimensions, it is not in favor of finding dense units in the sparse subspace or the higher-dimension subspace. In this paper, we propose an algorithm, called CBNI (Clustering high dimensional data streams Based on N-most interesting Itemsets), which finds dense units based on N-most interesting itemsets mining and can solve this problem. The experimental results show that the CBNI algorithm performs better in terms of the scalability with dimensionality, the scalability with the number of points in dataset, and the cluster purity.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering high dimensional data streams based on N-most interesting itemsets mining\",\"authors\":\"F. Ao, Jing Du, Jingyi Yu, Fuzhi Wang, Qiong Wang\",\"doi\":\"10.1109/FSKD.2013.6816232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key for clustering high dimensional data streams is finding dense units. Traditional methods apply frequent itemsets mining for finding dense units. Since these methods are not able to differentiate the density of units in subspaces with different dimensions, it is not in favor of finding dense units in the sparse subspace or the higher-dimension subspace. In this paper, we propose an algorithm, called CBNI (Clustering high dimensional data streams Based on N-most interesting Itemsets), which finds dense units based on N-most interesting itemsets mining and can solve this problem. The experimental results show that the CBNI algorithm performs better in terms of the scalability with dimensionality, the scalability with the number of points in dataset, and the cluster purity.\",\"PeriodicalId\":368964,\"journal\":{\"name\":\"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2013.6816232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类高维数据流的关键是找到密集的单元。传统方法采用频繁项集挖掘来寻找密集单元。由于这些方法不能区分不同维的子空间中单位的密度,因此不适合在稀疏子空间或高维子空间中寻找密集的单位。本文提出了一种基于n个最感兴趣的项目集的高维数据流聚类算法CBNI (Clustering high dimensional data streams Based on N-most interesting Itemsets),该算法基于n个最感兴趣的项目集挖掘来寻找密集单元,可以解决这一问题。实验结果表明,CBNI算法在随维数的可扩展性、随数据集点数的可扩展性和聚类纯度方面都有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering high dimensional data streams based on N-most interesting itemsets mining
The key for clustering high dimensional data streams is finding dense units. Traditional methods apply frequent itemsets mining for finding dense units. Since these methods are not able to differentiate the density of units in subspaces with different dimensions, it is not in favor of finding dense units in the sparse subspace or the higher-dimension subspace. In this paper, we propose an algorithm, called CBNI (Clustering high dimensional data streams Based on N-most interesting Itemsets), which finds dense units based on N-most interesting itemsets mining and can solve this problem. The experimental results show that the CBNI algorithm performs better in terms of the scalability with dimensionality, the scalability with the number of points in dataset, and the cluster purity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信