Weihao Lu, Dezong Zhao, C. Premebida, Wen‐Hua Chen, Daxin Tian
{"title":"基于语义特征挖掘的三维目标分类与分割","authors":"Weihao Lu, Dezong Zhao, C. Premebida, Wen‐Hua Chen, Daxin Tian","doi":"10.1109/ICRA48506.2021.9561986","DOIUrl":null,"url":null,"abstract":"Deep learning on 3D point clouds has drawn much attention, due to its large variety of applications in intelligent perception for automated and robotic systems. Unlike structured 2D images, it is challenging to extract features and implement convolutional networks over these unordered points. Although a number of previous works achieved high accuracies for point cloud recognition, they tend to process local point information in such a way that semantic information is not fully encoded. In this paper, we propose a deep neural network for 3D point cloud processing that utilizes effective feature aggregation methods emphasizing both generalizability and relevance. In particular, our method uses fixed-radius grouping for pooling layers and spherical kernel convolution for semantics mining. To address the issue of gradient degradation and memory consumption of a deep network, a parallel feature feed-forward mechanism and bottleneck layers are implemented to reduce the number of parameters. Experiments show that our algorithm achieves state-of-the-art results and competitive accuracy in both classification and part segmentation while maintaining an efficient architecture.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semantic Feature Mining for 3D Object Classification and Segmentation\",\"authors\":\"Weihao Lu, Dezong Zhao, C. Premebida, Wen‐Hua Chen, Daxin Tian\",\"doi\":\"10.1109/ICRA48506.2021.9561986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning on 3D point clouds has drawn much attention, due to its large variety of applications in intelligent perception for automated and robotic systems. Unlike structured 2D images, it is challenging to extract features and implement convolutional networks over these unordered points. Although a number of previous works achieved high accuracies for point cloud recognition, they tend to process local point information in such a way that semantic information is not fully encoded. In this paper, we propose a deep neural network for 3D point cloud processing that utilizes effective feature aggregation methods emphasizing both generalizability and relevance. In particular, our method uses fixed-radius grouping for pooling layers and spherical kernel convolution for semantics mining. To address the issue of gradient degradation and memory consumption of a deep network, a parallel feature feed-forward mechanism and bottleneck layers are implemented to reduce the number of parameters. Experiments show that our algorithm achieves state-of-the-art results and competitive accuracy in both classification and part segmentation while maintaining an efficient architecture.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semantic Feature Mining for 3D Object Classification and Segmentation
Deep learning on 3D point clouds has drawn much attention, due to its large variety of applications in intelligent perception for automated and robotic systems. Unlike structured 2D images, it is challenging to extract features and implement convolutional networks over these unordered points. Although a number of previous works achieved high accuracies for point cloud recognition, they tend to process local point information in such a way that semantic information is not fully encoded. In this paper, we propose a deep neural network for 3D point cloud processing that utilizes effective feature aggregation methods emphasizing both generalizability and relevance. In particular, our method uses fixed-radius grouping for pooling layers and spherical kernel convolution for semantics mining. To address the issue of gradient degradation and memory consumption of a deep network, a parallel feature feed-forward mechanism and bottleneck layers are implemented to reduce the number of parameters. Experiments show that our algorithm achieves state-of-the-art results and competitive accuracy in both classification and part segmentation while maintaining an efficient architecture.