I-Hung Khoo, P. Marayong, Vennila Krishnan, Michael Balagtas, Omar Rojas
{"title":"脑卒中后患者步态康复生物反馈装置的设计","authors":"I-Hung Khoo, P. Marayong, Vennila Krishnan, Michael Balagtas, Omar Rojas","doi":"10.1109/MWSCAS.2015.7282097","DOIUrl":null,"url":null,"abstract":"A novel device, named `Walk-Even', was developed to measure human gait and provide real-time feedback to correct gait asymmetry. Gait asymmetry is usually exhibited in patients with stroke or with certain neurological disorders. Our device can measure the weight pressure distribution that the patient exerts on each foot, in addition to the gait time, swing time, and stance time of each leg while walking. Based on the real time information, a biofeedback is given by means of auditory, and unpleasant electrotactile stimulation to actively correct gait asymmetry. The device consists of custom insoles with embedded force sensors adjustable to fit any shoe size, electrotactile and auditory feedback circuits, microcontroller, and wireless XBee transceivers. We compared the gait measurements from our device with that of a commercial device (MobilityLab) to verify its accuracy. Preliminary testing on post-stroke patients has shown that our device helps to improve their gait symmetry.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Design of a biofeedback device for gait rehabilitation in post-stroke patients\",\"authors\":\"I-Hung Khoo, P. Marayong, Vennila Krishnan, Michael Balagtas, Omar Rojas\",\"doi\":\"10.1109/MWSCAS.2015.7282097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel device, named `Walk-Even', was developed to measure human gait and provide real-time feedback to correct gait asymmetry. Gait asymmetry is usually exhibited in patients with stroke or with certain neurological disorders. Our device can measure the weight pressure distribution that the patient exerts on each foot, in addition to the gait time, swing time, and stance time of each leg while walking. Based on the real time information, a biofeedback is given by means of auditory, and unpleasant electrotactile stimulation to actively correct gait asymmetry. The device consists of custom insoles with embedded force sensors adjustable to fit any shoe size, electrotactile and auditory feedback circuits, microcontroller, and wireless XBee transceivers. We compared the gait measurements from our device with that of a commercial device (MobilityLab) to verify its accuracy. Preliminary testing on post-stroke patients has shown that our device helps to improve their gait symmetry.\",\"PeriodicalId\":216613,\"journal\":{\"name\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2015.7282097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a biofeedback device for gait rehabilitation in post-stroke patients
A novel device, named `Walk-Even', was developed to measure human gait and provide real-time feedback to correct gait asymmetry. Gait asymmetry is usually exhibited in patients with stroke or with certain neurological disorders. Our device can measure the weight pressure distribution that the patient exerts on each foot, in addition to the gait time, swing time, and stance time of each leg while walking. Based on the real time information, a biofeedback is given by means of auditory, and unpleasant electrotactile stimulation to actively correct gait asymmetry. The device consists of custom insoles with embedded force sensors adjustable to fit any shoe size, electrotactile and auditory feedback circuits, microcontroller, and wireless XBee transceivers. We compared the gait measurements from our device with that of a commercial device (MobilityLab) to verify its accuracy. Preliminary testing on post-stroke patients has shown that our device helps to improve their gait symmetry.