布斯无记忆模乘法器,有符号数字表示

Shuangching Chen, Shugang Wei, K. Shimizu
{"title":"布斯无记忆模乘法器,有符号数字表示","authors":"Shuangching Chen, Shugang Wei, K. Shimizu","doi":"10.1109/APCCAS.2004.1412681","DOIUrl":null,"url":null,"abstract":"We present new Booth modular multipliers with a signed-digit number representation. The proposed Booth algorithm can recode the multiplier in which every two-digit has an element of the set {-2, -1, 0, 1, 2}. In a serial modular multiplier, the proposed Booth modular multipliers compared to earlier ones offer savings up 50 percent in the execution time. In a parallel multiplier, it can be up to 18.76 percent in the implementation area for modulus m = 255.","PeriodicalId":426683,"journal":{"name":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Booth memoryless modular multiplier with signed-digit number representation\",\"authors\":\"Shuangching Chen, Shugang Wei, K. Shimizu\",\"doi\":\"10.1109/APCCAS.2004.1412681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new Booth modular multipliers with a signed-digit number representation. The proposed Booth algorithm can recode the multiplier in which every two-digit has an element of the set {-2, -1, 0, 1, 2}. In a serial modular multiplier, the proposed Booth modular multipliers compared to earlier ones offer savings up 50 percent in the execution time. In a parallel multiplier, it can be up to 18.76 percent in the implementation area for modulus m = 255.\",\"PeriodicalId\":426683,\"journal\":{\"name\":\"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2004.1412681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2004.1412681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了新的布斯模块乘法器与符号数字表示。提出的Booth算法可以重新编码乘数,其中每个两位数都有一个集合{-2,-1,0,1,2}中的元素。在串行模块化乘法器中,与早期的乘法器相比,所提出的Booth模块化乘法器在执行时间上节省了50%。在并行乘法器中,在模m = 255的实现区域中,它可以高达18.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Booth memoryless modular multiplier with signed-digit number representation
We present new Booth modular multipliers with a signed-digit number representation. The proposed Booth algorithm can recode the multiplier in which every two-digit has an element of the set {-2, -1, 0, 1, 2}. In a serial modular multiplier, the proposed Booth modular multipliers compared to earlier ones offer savings up 50 percent in the execution time. In a parallel multiplier, it can be up to 18.76 percent in the implementation area for modulus m = 255.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信