Daniel Genkin, Mihir Pattani, R. Schuster, Eran Tromer
{"title":"联觉:通过远程声学侧通道检测屏幕内容","authors":"Daniel Genkin, Mihir Pattani, R. Schuster, Eran Tromer","doi":"10.1109/SP.2019.00074","DOIUrl":null,"url":null,"abstract":"We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or ``smart speaker'' placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen.","PeriodicalId":272713,"journal":{"name":"2019 IEEE Symposium on Security and Privacy (SP)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels\",\"authors\":\"Daniel Genkin, Mihir Pattani, R. Schuster, Eran Tromer\",\"doi\":\"10.1109/SP.2019.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or ``smart speaker'' placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen.\",\"PeriodicalId\":272713,\"journal\":{\"name\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2019.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2019.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels
We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or ``smart speaker'' placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen.