高斯径向基函数网络对蛋白质二级结构的影响

T. Ibrikci, M. Guler, M. Açıkkar
{"title":"高斯径向基函数网络对蛋白质二级结构的影响","authors":"T. Ibrikci, M. Guler, M. Açıkkar","doi":"10.1109/IEMBS.2001.1019680","DOIUrl":null,"url":null,"abstract":"Studies of the radial basis function (RBF) network on protein secondary structures are presented. Secondary structure prediction is a useful first step in understanding how the amino acid sequence of protein determines the native-state. If the secondary structure is known, it is possible to derive a comparatively small number of tertiary structures using the secondary structural element pack. A study of the Gaussian-RBF with different window sizes on the dataset developed by Qian-Sejnowski, and also a dissimilar dataset by Chandonia is given. The RBF network predicts each position in turn-based on a local window of residues, by sliding this window along the length of the sequence. It is shown that the Gaussian RBF network is not an appropriate technique to be used in the prediction of secondary structure for sequence structural state.","PeriodicalId":386546,"journal":{"name":"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Gaussian radial basis function network on protein secondary structures\",\"authors\":\"T. Ibrikci, M. Guler, M. Açıkkar\",\"doi\":\"10.1109/IEMBS.2001.1019680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies of the radial basis function (RBF) network on protein secondary structures are presented. Secondary structure prediction is a useful first step in understanding how the amino acid sequence of protein determines the native-state. If the secondary structure is known, it is possible to derive a comparatively small number of tertiary structures using the secondary structural element pack. A study of the Gaussian-RBF with different window sizes on the dataset developed by Qian-Sejnowski, and also a dissimilar dataset by Chandonia is given. The RBF network predicts each position in turn-based on a local window of residues, by sliding this window along the length of the sequence. It is shown that the Gaussian RBF network is not an appropriate technique to be used in the prediction of secondary structure for sequence structural state.\",\"PeriodicalId\":386546,\"journal\":{\"name\":\"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2001.1019680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2001.1019680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对蛋白质二级结构的径向基函数(RBF)网络进行了研究。二级结构预测是理解蛋白质的氨基酸序列如何决定天然状态的有用的第一步。如果二级结构是已知的,则可以使用二级结构单元组推导出相对较少数量的三级结构。在Qian-Sejnowski开发的数据集和Chandonia开发的不相似数据集上研究了不同窗口大小的高斯- rbf。RBF网络通过沿序列长度滑动窗口,根据残数的局部窗口依次预测每个位置。结果表明,高斯RBF网络不适合用于序列结构状态的二级结构预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Gaussian radial basis function network on protein secondary structures
Studies of the radial basis function (RBF) network on protein secondary structures are presented. Secondary structure prediction is a useful first step in understanding how the amino acid sequence of protein determines the native-state. If the secondary structure is known, it is possible to derive a comparatively small number of tertiary structures using the secondary structural element pack. A study of the Gaussian-RBF with different window sizes on the dataset developed by Qian-Sejnowski, and also a dissimilar dataset by Chandonia is given. The RBF network predicts each position in turn-based on a local window of residues, by sliding this window along the length of the sequence. It is shown that the Gaussian RBF network is not an appropriate technique to be used in the prediction of secondary structure for sequence structural state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信