六边形金刚石立方周期识别的计算实验

И.Е. Ерёмин, Д.В. Фомин
{"title":"六边形金刚石立方周期识别的计算实验","authors":"И.Е. Ерёмин, Д.В. Фомин","doi":"10.25587/svfu.2019.102.31513","DOIUrl":null,"url":null,"abstract":"The coefficient of compactness and the Madelung constant are key parameters in researches of substances in condensed state. The method of compact matrix description of crystal lattice makes calculation of these parameters faster and simpler. However, since this method is based on cubic symmetry of the crystal structure, it cannot be applied to substances of noncubic syngony. In this paper, we study the crystal lattice of a hexagonal diamond to determine existence of the cubic period and cube-generator. The goals of our study are the following: 1) to determine the presence or absence of the cubic period and cube-generator of the crystal lattice; 2) to determine the space orientation of the cube-generator; 3) to determine the value of the cubic period; 4) to verify preservation of the discovered periodicity for an extensive crystal fragment. The results of the computational experiment prove the existence of the cubic period and cube-generator. The value of the cubic period is obtaine (36 notational units, ∼ 2, 14 nm). Its preservation for an extensive crystal fragment is shown. It is shown that the space orientation of the cube-generator and basic elements of a two-component cubic model of the crystal lattice of the hexagonal diamond is the same. The obtained results lead to applicability of the method of compact matrix description to the crystal lattice of the hexagonal diamond, thus optimizing the calculation of the compactness coefficient and the Madelung constant for this substance.","PeriodicalId":177207,"journal":{"name":"Журнал «Математические заметки СВФУ»","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational experiment for identifying of cubic period of hexagonal diamond\",\"authors\":\"И.Е. Ерёмин, Д.В. Фомин\",\"doi\":\"10.25587/svfu.2019.102.31513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coefficient of compactness and the Madelung constant are key parameters in researches of substances in condensed state. The method of compact matrix description of crystal lattice makes calculation of these parameters faster and simpler. However, since this method is based on cubic symmetry of the crystal structure, it cannot be applied to substances of noncubic syngony. In this paper, we study the crystal lattice of a hexagonal diamond to determine existence of the cubic period and cube-generator. The goals of our study are the following: 1) to determine the presence or absence of the cubic period and cube-generator of the crystal lattice; 2) to determine the space orientation of the cube-generator; 3) to determine the value of the cubic period; 4) to verify preservation of the discovered periodicity for an extensive crystal fragment. The results of the computational experiment prove the existence of the cubic period and cube-generator. The value of the cubic period is obtaine (36 notational units, ∼ 2, 14 nm). Its preservation for an extensive crystal fragment is shown. It is shown that the space orientation of the cube-generator and basic elements of a two-component cubic model of the crystal lattice of the hexagonal diamond is the same. The obtained results lead to applicability of the method of compact matrix description to the crystal lattice of the hexagonal diamond, thus optimizing the calculation of the compactness coefficient and the Madelung constant for this substance.\",\"PeriodicalId\":177207,\"journal\":{\"name\":\"Журнал «Математические заметки СВФУ»\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Журнал «Математические заметки СВФУ»\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25587/svfu.2019.102.31513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Журнал «Математические заметки СВФУ»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25587/svfu.2019.102.31513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

致密系数和马德隆常数是研究凝聚态物质的关键参数。晶格的紧矩阵描述方法使这些参数的计算更加快速和简单。然而,由于该方法是基于晶体结构的立方对称,因此不能应用于非立方共形的物质。本文研究了六边形金刚石的晶格,以确定立方周期和立方发生器的存在性。我们的研究目标是:1)确定晶格的立方周期和立方发生器的存在与否;2)确定立方体发生器的空间方位;3)确定三次周期的值;4)验证广泛的晶体碎片所发现的周期性的保存。计算实验结果证明了三次周期和立方发生器的存在。得到了立方周期的值(36个符号单位,~ 2,14 nm)。它保存了大量的晶体碎片。结果表明,六方金刚石晶格的双分量立方模型的基本元素与立方发生器的空间取向相同。所得结果使紧矩阵描述方法适用于六边形金刚石的晶格,从而优化了该物质的紧度系数和马德隆常数的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational experiment for identifying of cubic period of hexagonal diamond
The coefficient of compactness and the Madelung constant are key parameters in researches of substances in condensed state. The method of compact matrix description of crystal lattice makes calculation of these parameters faster and simpler. However, since this method is based on cubic symmetry of the crystal structure, it cannot be applied to substances of noncubic syngony. In this paper, we study the crystal lattice of a hexagonal diamond to determine existence of the cubic period and cube-generator. The goals of our study are the following: 1) to determine the presence or absence of the cubic period and cube-generator of the crystal lattice; 2) to determine the space orientation of the cube-generator; 3) to determine the value of the cubic period; 4) to verify preservation of the discovered periodicity for an extensive crystal fragment. The results of the computational experiment prove the existence of the cubic period and cube-generator. The value of the cubic period is obtaine (36 notational units, ∼ 2, 14 nm). Its preservation for an extensive crystal fragment is shown. It is shown that the space orientation of the cube-generator and basic elements of a two-component cubic model of the crystal lattice of the hexagonal diamond is the same. The obtained results lead to applicability of the method of compact matrix description to the crystal lattice of the hexagonal diamond, thus optimizing the calculation of the compactness coefficient and the Madelung constant for this substance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信