Ricardo Romero, Cristian Pilapanta, Luis Porras, A. Tierra
{"title":"利用厄瓜多尔全球导航卫星系统和气象资料的神经网络预测可降水量","authors":"Ricardo Romero, Cristian Pilapanta, Luis Porras, A. Tierra","doi":"10.24133/geoespacial.v15i2.1349","DOIUrl":null,"url":null,"abstract":"El Sistema de posicionamiento global (GPS) consiste en una constelación de satélites que transmiten señales de radio a un gran número de usuarios en cuanto a navegación, transferencia de tiempo y posicionamiento relativo. Estas señales de radio de banda L se retrasan por el vapor de agua contenido en la atmosfera mientras viajan desde los satélites GPS a los receptores GPS en tierra. El vapor de agua desempeña un papel crucial en diferentes procesos atmosféricos, actuando en una amplia gama de escalas temporales y espaciales: desde el clima global hasta la micrometeorología. Los científicos han desarrollado una variedad de medios para medir la distribución vertical y horizontal del vapor de agua. En este trabajo, se estudió un modelo para la predicción del contenido de agua precipitable a partir de datos GNSS utilizando una red neuronal. En este caso, se estableció como parámetros iniciales: presión, temperatura, posiciones y retardo total del cenit; y en cuanto a la red neuronal fue una red neuronal de función base radial (RBFNN) con tres capas. Los resultados demostraron que el RBFNN logró predecir vapor de agua precipitable con un RMS hasta 2 mm en la red GNSS general, es decir, esta metodología es una alternativa valiosa para establecer un modelo para estas condiciones y parámetros.","PeriodicalId":231240,"journal":{"name":"Revista Geoespacial","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDICTION OF PRECIPITABLE WATER VAPOR WITH A NEURAL NETWORK FROM THE ECUADORIAN GNSS AND METEOROLOGICAL DATA\",\"authors\":\"Ricardo Romero, Cristian Pilapanta, Luis Porras, A. Tierra\",\"doi\":\"10.24133/geoespacial.v15i2.1349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El Sistema de posicionamiento global (GPS) consiste en una constelación de satélites que transmiten señales de radio a un gran número de usuarios en cuanto a navegación, transferencia de tiempo y posicionamiento relativo. Estas señales de radio de banda L se retrasan por el vapor de agua contenido en la atmosfera mientras viajan desde los satélites GPS a los receptores GPS en tierra. El vapor de agua desempeña un papel crucial en diferentes procesos atmosféricos, actuando en una amplia gama de escalas temporales y espaciales: desde el clima global hasta la micrometeorología. Los científicos han desarrollado una variedad de medios para medir la distribución vertical y horizontal del vapor de agua. En este trabajo, se estudió un modelo para la predicción del contenido de agua precipitable a partir de datos GNSS utilizando una red neuronal. En este caso, se estableció como parámetros iniciales: presión, temperatura, posiciones y retardo total del cenit; y en cuanto a la red neuronal fue una red neuronal de función base radial (RBFNN) con tres capas. Los resultados demostraron que el RBFNN logró predecir vapor de agua precipitable con un RMS hasta 2 mm en la red GNSS general, es decir, esta metodología es una alternativa valiosa para establecer un modelo para estas condiciones y parámetros.\",\"PeriodicalId\":231240,\"journal\":{\"name\":\"Revista Geoespacial\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Geoespacial\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24133/geoespacial.v15i2.1349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Geoespacial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24133/geoespacial.v15i2.1349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PREDICTION OF PRECIPITABLE WATER VAPOR WITH A NEURAL NETWORK FROM THE ECUADORIAN GNSS AND METEOROLOGICAL DATA
El Sistema de posicionamiento global (GPS) consiste en una constelación de satélites que transmiten señales de radio a un gran número de usuarios en cuanto a navegación, transferencia de tiempo y posicionamiento relativo. Estas señales de radio de banda L se retrasan por el vapor de agua contenido en la atmosfera mientras viajan desde los satélites GPS a los receptores GPS en tierra. El vapor de agua desempeña un papel crucial en diferentes procesos atmosféricos, actuando en una amplia gama de escalas temporales y espaciales: desde el clima global hasta la micrometeorología. Los científicos han desarrollado una variedad de medios para medir la distribución vertical y horizontal del vapor de agua. En este trabajo, se estudió un modelo para la predicción del contenido de agua precipitable a partir de datos GNSS utilizando una red neuronal. En este caso, se estableció como parámetros iniciales: presión, temperatura, posiciones y retardo total del cenit; y en cuanto a la red neuronal fue una red neuronal de función base radial (RBFNN) con tres capas. Los resultados demostraron que el RBFNN logró predecir vapor de agua precipitable con un RMS hasta 2 mm en la red GNSS general, es decir, esta metodología es una alternativa valiosa para establecer un modelo para estas condiciones y parámetros.