Gilberto Berardinelli, Fernando M. L. Tavares, T. B. Sørensen, P. Mogensen, K. Pajukoski
{"title":"零尾DFT-spread-OFDM信号","authors":"Gilberto Berardinelli, Fernando M. L. Tavares, T. B. Sørensen, P. Mogensen, K. Pajukoski","doi":"10.1109/GLOCOMW.2013.6824991","DOIUrl":null,"url":null,"abstract":"In the existing scheduled radio standards using Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) modulation, the Cyclic Prefix (CP) duration is usually hard-coded and set as a compromise between the expected channel characteristics and the necessity of fitting a predefined frame duration. This may lead to system inefficiencies as well as bad coexistence with networks using different CP settings. In this paper, we propose the usage of zero-tail DFT-s-OFDM signals as a solution for decoupling the radio numerology from the expected channel characteristics. Zero-tail DFT-s-OFDM modulation allows to adapt the overhead to the estimated delay spread/propagation delay. Moreover, it enables networks operating over channels with different characteristics to adopt the same numerology, thus improving their coexistence. An analytical description of the zero-tail DFT-s-OFDM signals is provided, as well as a numerical performance evaluation with Monte Carlo simulations. Zero-tail DFT-s-OFDM signals are shown to have approximately the same Block Error Rate (BLER) performance of traditional OFDM, with the further benefit of lower out-of-band (OOB) emissions.","PeriodicalId":174992,"journal":{"name":"2013 IEEE Globecom Workshops (GC Wkshps)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Zero-tail DFT-spread-OFDM signals\",\"authors\":\"Gilberto Berardinelli, Fernando M. L. Tavares, T. B. Sørensen, P. Mogensen, K. Pajukoski\",\"doi\":\"10.1109/GLOCOMW.2013.6824991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the existing scheduled radio standards using Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) modulation, the Cyclic Prefix (CP) duration is usually hard-coded and set as a compromise between the expected channel characteristics and the necessity of fitting a predefined frame duration. This may lead to system inefficiencies as well as bad coexistence with networks using different CP settings. In this paper, we propose the usage of zero-tail DFT-s-OFDM signals as a solution for decoupling the radio numerology from the expected channel characteristics. Zero-tail DFT-s-OFDM modulation allows to adapt the overhead to the estimated delay spread/propagation delay. Moreover, it enables networks operating over channels with different characteristics to adopt the same numerology, thus improving their coexistence. An analytical description of the zero-tail DFT-s-OFDM signals is provided, as well as a numerical performance evaluation with Monte Carlo simulations. Zero-tail DFT-s-OFDM signals are shown to have approximately the same Block Error Rate (BLER) performance of traditional OFDM, with the further benefit of lower out-of-band (OOB) emissions.\",\"PeriodicalId\":174992,\"journal\":{\"name\":\"2013 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2013.6824991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2013.6824991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the existing scheduled radio standards using Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) modulation, the Cyclic Prefix (CP) duration is usually hard-coded and set as a compromise between the expected channel characteristics and the necessity of fitting a predefined frame duration. This may lead to system inefficiencies as well as bad coexistence with networks using different CP settings. In this paper, we propose the usage of zero-tail DFT-s-OFDM signals as a solution for decoupling the radio numerology from the expected channel characteristics. Zero-tail DFT-s-OFDM modulation allows to adapt the overhead to the estimated delay spread/propagation delay. Moreover, it enables networks operating over channels with different characteristics to adopt the same numerology, thus improving their coexistence. An analytical description of the zero-tail DFT-s-OFDM signals is provided, as well as a numerical performance evaluation with Monte Carlo simulations. Zero-tail DFT-s-OFDM signals are shown to have approximately the same Block Error Rate (BLER) performance of traditional OFDM, with the further benefit of lower out-of-band (OOB) emissions.