IGBT模块的可靠性评估模型与相关组件的系统

E. Kostandyan, J. Sørensen
{"title":"IGBT模块的可靠性评估模型与相关组件的系统","authors":"E. Kostandyan, J. Sørensen","doi":"10.1109/RAMS.2013.6517663","DOIUrl":null,"url":null,"abstract":"System modeling of electrical components for Wind Turbine (WT) applications is an important part for the overall WT reliability assessment. The presented approach is an approximate method for Insulated Gate Bipolar Transistor (IGBT) reliability estimation, modeled based on the parallel system configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between the components in the reliability estimation though limit state functions and mechanical (failure-effect) correlations. The model is based on a physics of failure approach and a linear accumulated damage rule. To account model parameter variabilities, the First Order Reliability Method (FORM) technique was applied for the systems failure functions estimation. It is desired to compare the results with the true system failure function, which is possible to estimate using simulation techniques. Theoretical model development should be applied for the further research. One of the directions for it might be modeling the system based on the Sequential Order Statistics, by considering the failure of the minimum (weakest component) at each loading level. The proposed idea to represent the system by the independent components could also be used for modeling reliability by Sequential Order Statistics.","PeriodicalId":189714,"journal":{"name":"2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reliability assessment of IGBT modules modeled as systems with correlated components\",\"authors\":\"E. Kostandyan, J. Sørensen\",\"doi\":\"10.1109/RAMS.2013.6517663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System modeling of electrical components for Wind Turbine (WT) applications is an important part for the overall WT reliability assessment. The presented approach is an approximate method for Insulated Gate Bipolar Transistor (IGBT) reliability estimation, modeled based on the parallel system configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between the components in the reliability estimation though limit state functions and mechanical (failure-effect) correlations. The model is based on a physics of failure approach and a linear accumulated damage rule. To account model parameter variabilities, the First Order Reliability Method (FORM) technique was applied for the systems failure functions estimation. It is desired to compare the results with the true system failure function, which is possible to estimate using simulation techniques. Theoretical model development should be applied for the further research. One of the directions for it might be modeling the system based on the Sequential Order Statistics, by considering the failure of the minimum (weakest component) at each loading level. The proposed idea to represent the system by the independent components could also be used for modeling reliability by Sequential Order Statistics.\",\"PeriodicalId\":189714,\"journal\":{\"name\":\"2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2013.6517663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2013.6517663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

风力发电机组电气元件的系统建模是风力发电机组整体可靠性评估的重要组成部分。本文提出的方法是一种基于并联系统模型的绝缘栅双极晶体管(IGBT)可靠性估计的近似方法。该方法对系统可靠性的估计是保守估计。该方法可推广应用于焊接接头、螺栓、轴承等组成系统的可靠性估计。该可靠性模型通过极限状态函数和力学(失效效应)相关性将可靠性估计中各分量之间的相关性纳入其中。该模型基于失效物理方法和线性累积损伤规则。考虑到模型参数的可变性,采用一阶可靠性法(FORM)技术对系统的失效函数进行估计。需要将结果与真实的系统故障函数进行比较,这可以使用仿真技术进行估计。理论模型的建立应应用于进一步的研究。它的一个方向可能是基于顺序顺序统计对系统建模,通过考虑每个负载级别上最小(最弱组件)的故障。所提出的用独立组件表示系统的思想也可用于序列顺序统计的可靠性建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability assessment of IGBT modules modeled as systems with correlated components
System modeling of electrical components for Wind Turbine (WT) applications is an important part for the overall WT reliability assessment. The presented approach is an approximate method for Insulated Gate Bipolar Transistor (IGBT) reliability estimation, modeled based on the parallel system configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between the components in the reliability estimation though limit state functions and mechanical (failure-effect) correlations. The model is based on a physics of failure approach and a linear accumulated damage rule. To account model parameter variabilities, the First Order Reliability Method (FORM) technique was applied for the systems failure functions estimation. It is desired to compare the results with the true system failure function, which is possible to estimate using simulation techniques. Theoretical model development should be applied for the further research. One of the directions for it might be modeling the system based on the Sequential Order Statistics, by considering the failure of the minimum (weakest component) at each loading level. The proposed idea to represent the system by the independent components could also be used for modeling reliability by Sequential Order Statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信