网络编码的一类代数码

M. Bossert, E. Gabidulin
{"title":"网络编码的一类代数码","authors":"M. Bossert, E. Gabidulin","doi":"10.1109/ISIT.2009.5205280","DOIUrl":null,"url":null,"abstract":"The subspace metric is a subject of intensive researche recently. Nevertheless not much is known about codes in this metric in general. In this paper, one class of subspace metric based codes is defined. This class is a generalization of a Koetter-Kshishang-Silva construction, namely, the lifting construction. Also, a quasi-Singleton bound is derived which is tighter than the Koetter-Kschischang bound for large dimensions of subspaces.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"One family of algebraic codes for network coding\",\"authors\":\"M. Bossert, E. Gabidulin\",\"doi\":\"10.1109/ISIT.2009.5205280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subspace metric is a subject of intensive researche recently. Nevertheless not much is known about codes in this metric in general. In this paper, one class of subspace metric based codes is defined. This class is a generalization of a Koetter-Kshishang-Silva construction, namely, the lifting construction. Also, a quasi-Singleton bound is derived which is tighter than the Koetter-Kschischang bound for large dimensions of subspaces.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

子空间度量是近年来研究的热点。然而,一般来说,我们对这个度量中的代码知之甚少。本文定义了一类基于子空间度量的码。该类是kotter - kshishang - silva构造的推广,即提升构造。同时,在大维子空间中,导出了一个比kotter - kschischang界更紧的拟单胞界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One family of algebraic codes for network coding
The subspace metric is a subject of intensive researche recently. Nevertheless not much is known about codes in this metric in general. In this paper, one class of subspace metric based codes is defined. This class is a generalization of a Koetter-Kshishang-Silva construction, namely, the lifting construction. Also, a quasi-Singleton bound is derived which is tighter than the Koetter-Kschischang bound for large dimensions of subspaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信