T. Moise, A. Seabaugh, E. Beam, Y. Kao, J. Randall
{"title":"基于ingaas的热电子晶体管的室温工作","authors":"T. Moise, A. Seabaugh, E. Beam, Y. Kao, J. Randall","doi":"10.1109/DRC.1993.1009610","DOIUrl":null,"url":null,"abstract":"Summary form only given. It is demonstrated that 300-K operation of an InGaAs-based HET (hot-electron transistor) can be achieved by further increasing the electron injection energy in combination with the use of a wide-bandgap base-collector isolation barrier. The characteristics of a device consisting of an InAlAs emitter, a 10-AA AlAs tunnel-barrier positioned at the emitter-base heterojunction, a 400-AA n+ InGaAs base region, and a 2500-AA InAlGaAs collector barrier are reported. The injected electrons are transported across the base region with over 80% efficiency, as measured in a common-base configuration. The maximum common-emitter current gain in this nonoptimized transistor is nearly four with an f/sub T/ of over 40 GHz and a base-collector breakdown voltage of 1.5 V. A systematic study of RHET (resonant tunneling HET) injector and collection properties indicates that the HET can operate at room temperature with a current gain on the order of 100. 300-K operation of a single-RHET, exclusive-NOR integrated circuit that is similar in design to the one demonstrated at 77 K by N. Yokoyama et al. (1985) is also shown. >","PeriodicalId":310841,"journal":{"name":"51st Annual Device Research Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Room-temperature operation of InGaAs-based hot-electron transistors\",\"authors\":\"T. Moise, A. Seabaugh, E. Beam, Y. Kao, J. Randall\",\"doi\":\"10.1109/DRC.1993.1009610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. It is demonstrated that 300-K operation of an InGaAs-based HET (hot-electron transistor) can be achieved by further increasing the electron injection energy in combination with the use of a wide-bandgap base-collector isolation barrier. The characteristics of a device consisting of an InAlAs emitter, a 10-AA AlAs tunnel-barrier positioned at the emitter-base heterojunction, a 400-AA n+ InGaAs base region, and a 2500-AA InAlGaAs collector barrier are reported. The injected electrons are transported across the base region with over 80% efficiency, as measured in a common-base configuration. The maximum common-emitter current gain in this nonoptimized transistor is nearly four with an f/sub T/ of over 40 GHz and a base-collector breakdown voltage of 1.5 V. A systematic study of RHET (resonant tunneling HET) injector and collection properties indicates that the HET can operate at room temperature with a current gain on the order of 100. 300-K operation of a single-RHET, exclusive-NOR integrated circuit that is similar in design to the one demonstrated at 77 K by N. Yokoyama et al. (1985) is also shown. >\",\"PeriodicalId\":310841,\"journal\":{\"name\":\"51st Annual Device Research Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"51st Annual Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.1993.1009610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"51st Annual Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.1993.1009610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Room-temperature operation of InGaAs-based hot-electron transistors
Summary form only given. It is demonstrated that 300-K operation of an InGaAs-based HET (hot-electron transistor) can be achieved by further increasing the electron injection energy in combination with the use of a wide-bandgap base-collector isolation barrier. The characteristics of a device consisting of an InAlAs emitter, a 10-AA AlAs tunnel-barrier positioned at the emitter-base heterojunction, a 400-AA n+ InGaAs base region, and a 2500-AA InAlGaAs collector barrier are reported. The injected electrons are transported across the base region with over 80% efficiency, as measured in a common-base configuration. The maximum common-emitter current gain in this nonoptimized transistor is nearly four with an f/sub T/ of over 40 GHz and a base-collector breakdown voltage of 1.5 V. A systematic study of RHET (resonant tunneling HET) injector and collection properties indicates that the HET can operate at room temperature with a current gain on the order of 100. 300-K operation of a single-RHET, exclusive-NOR integrated circuit that is similar in design to the one demonstrated at 77 K by N. Yokoyama et al. (1985) is also shown. >