应变Si/SiGe mosfet沟道厚度的优化

K. Kwa, S. Chattopadhyay, S. Olsen, L. S. Driscoll, A. O'Neill
{"title":"应变Si/SiGe mosfet沟道厚度的优化","authors":"K. Kwa, S. Chattopadhyay, S. Olsen, L. S. Driscoll, A. O'Neill","doi":"10.1109/ESSDERC.2003.1256923","DOIUrl":null,"url":null,"abstract":"It is demonstrated from experimental I-V and C-V data, and confirmed by computer simulation, that strained Si/SiGe MOSFET performance severely degrades below a channel thickness of 7 nm. MOSFETs with strained Si channels of thickness 5 nm, 7 nm and 9 nm have been fabricated using a conventional high thermal budget process. The performance degradation is attributed to Ge diffusion through the strained Si layer, which causes a build up of gate oxide charge.","PeriodicalId":350452,"journal":{"name":"ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003.","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimisation of channel thickness in strained Si/SiGe MOSFETs\",\"authors\":\"K. Kwa, S. Chattopadhyay, S. Olsen, L. S. Driscoll, A. O'Neill\",\"doi\":\"10.1109/ESSDERC.2003.1256923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is demonstrated from experimental I-V and C-V data, and confirmed by computer simulation, that strained Si/SiGe MOSFET performance severely degrades below a channel thickness of 7 nm. MOSFETs with strained Si channels of thickness 5 nm, 7 nm and 9 nm have been fabricated using a conventional high thermal budget process. The performance degradation is attributed to Ge diffusion through the strained Si layer, which causes a build up of gate oxide charge.\",\"PeriodicalId\":350452,\"journal\":{\"name\":\"ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003.\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2003.1256923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2003.1256923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

实验I-V和C-V数据以及计算机模拟证实,应变Si/SiGe MOSFET的性能在沟道厚度小于7 nm时严重下降。采用传统的高热预算工艺制备了厚度为5nm、7nm和9nm的应变Si通道mosfet。性能下降的原因是Ge扩散通过应变的Si层,导致栅极氧化物电荷的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of channel thickness in strained Si/SiGe MOSFETs
It is demonstrated from experimental I-V and C-V data, and confirmed by computer simulation, that strained Si/SiGe MOSFET performance severely degrades below a channel thickness of 7 nm. MOSFETs with strained Si channels of thickness 5 nm, 7 nm and 9 nm have been fabricated using a conventional high thermal budget process. The performance degradation is attributed to Ge diffusion through the strained Si layer, which causes a build up of gate oxide charge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信