{"title":"基于电热耦合模型和模型预测控制的锂离子电池充电控制","authors":"A. K. de Souza, G. Plett, M. Trimboli","doi":"10.1109/APEC39645.2020.9124431","DOIUrl":null,"url":null,"abstract":"This paper presents a novel application of model predictive control (MPC) to the problem of managing lithiumion cell performance using a highly accurate low-order electrothermal equivalent circuit model and is experimentally validated via laboratory experiments. The proposed method uses MPC to ensure compliance with cell-level operational limits and has the potential to extend lifetime by mitigating certain mechanisms of cell degradation leading to capacity fade. A five-state electrothermal model is developed, characterized and validated. Implementation employs an extended nonlinear Kalman filter for state estimation and MPC for controlling charge/discharge current. The complete method is experimentally validated using a 26650 cylindrical format lithium-iron phosphate (LFP) cell. The new method: (i) develops a fully coupled electro-thermal model of cell dynamics; (ii) incorporates a dynamic hysteresis model to improve accuracy; (iii) employs a nonlinear Kalman filter for accurate state estimation to inform the MPC algorithm; and (iv) utilizes a modified form of MPC which correctly models direct feed-through behavior to characterize ohmic resistance.","PeriodicalId":171455,"journal":{"name":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lithium-Ion Battery Charging Control Using a Coupled Electro-Thermal Model and Model Predictive Control\",\"authors\":\"A. K. de Souza, G. Plett, M. Trimboli\",\"doi\":\"10.1109/APEC39645.2020.9124431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel application of model predictive control (MPC) to the problem of managing lithiumion cell performance using a highly accurate low-order electrothermal equivalent circuit model and is experimentally validated via laboratory experiments. The proposed method uses MPC to ensure compliance with cell-level operational limits and has the potential to extend lifetime by mitigating certain mechanisms of cell degradation leading to capacity fade. A five-state electrothermal model is developed, characterized and validated. Implementation employs an extended nonlinear Kalman filter for state estimation and MPC for controlling charge/discharge current. The complete method is experimentally validated using a 26650 cylindrical format lithium-iron phosphate (LFP) cell. The new method: (i) develops a fully coupled electro-thermal model of cell dynamics; (ii) incorporates a dynamic hysteresis model to improve accuracy; (iii) employs a nonlinear Kalman filter for accurate state estimation to inform the MPC algorithm; and (iv) utilizes a modified form of MPC which correctly models direct feed-through behavior to characterize ohmic resistance.\",\"PeriodicalId\":171455,\"journal\":{\"name\":\"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC39645.2020.9124431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC39645.2020.9124431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lithium-Ion Battery Charging Control Using a Coupled Electro-Thermal Model and Model Predictive Control
This paper presents a novel application of model predictive control (MPC) to the problem of managing lithiumion cell performance using a highly accurate low-order electrothermal equivalent circuit model and is experimentally validated via laboratory experiments. The proposed method uses MPC to ensure compliance with cell-level operational limits and has the potential to extend lifetime by mitigating certain mechanisms of cell degradation leading to capacity fade. A five-state electrothermal model is developed, characterized and validated. Implementation employs an extended nonlinear Kalman filter for state estimation and MPC for controlling charge/discharge current. The complete method is experimentally validated using a 26650 cylindrical format lithium-iron phosphate (LFP) cell. The new method: (i) develops a fully coupled electro-thermal model of cell dynamics; (ii) incorporates a dynamic hysteresis model to improve accuracy; (iii) employs a nonlinear Kalman filter for accurate state estimation to inform the MPC algorithm; and (iv) utilizes a modified form of MPC which correctly models direct feed-through behavior to characterize ohmic resistance.