利用深度学习诊断Covid-19

Divya Sharma, Kritika Shelly, Ekta Gandotra, Deepak Gupta
{"title":"利用深度学习诊断Covid-19","authors":"Divya Sharma, Kritika Shelly, Ekta Gandotra, Deepak Gupta","doi":"10.1145/3549206.3549275","DOIUrl":null,"url":null,"abstract":"In the global health disaster of the Coronavirus infection-2019 (Covid-19) pandemic, the health sector is avidly seeking new technologies and strategies to detect and manage the spread of the Coronavirus outbreak. Artificial Intelligence (AI) is currently one of the most essential aspects of global technology since it can track and monitor the rate at which the Coronavirus develops as well as determines the danger and severity of Coronavirus patients. In this paper, we have proposed a two-stage end-to-end Deep Learning (DL) model which can be used to predict the presence and severity of Covid-19 infection in a patient as early and accurately as possible so that the spread of this viral infection can be slowed down. Hence, based on the Computed Tomography (CT) scans or chest X-rays provided by the user as an input, the DL models are built that can forecast the presence of Covid-19 in that respective patient accurately and efficiently. In this paper, 5 DL models i.e., VGG16, InceptionV3, Xception, ResNet50, and Convolution Neural Networks (CNN) are built and their comparative analysis is carried out for the diagnosis of Covid-19. On the Google Colab GPU, the models are trained for 100 epochs on a total of 1686 images of chest X-rays and CT scans. The experimental results show that out of all these models, the model based on the Xception algorithm is the most accurate one in determining the presence of the disease and provides an accuracy of 81% and 89% on CT scans and Chest x-rays respectively.","PeriodicalId":199675,"journal":{"name":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Covid-19 using Deep Learning\",\"authors\":\"Divya Sharma, Kritika Shelly, Ekta Gandotra, Deepak Gupta\",\"doi\":\"10.1145/3549206.3549275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the global health disaster of the Coronavirus infection-2019 (Covid-19) pandemic, the health sector is avidly seeking new technologies and strategies to detect and manage the spread of the Coronavirus outbreak. Artificial Intelligence (AI) is currently one of the most essential aspects of global technology since it can track and monitor the rate at which the Coronavirus develops as well as determines the danger and severity of Coronavirus patients. In this paper, we have proposed a two-stage end-to-end Deep Learning (DL) model which can be used to predict the presence and severity of Covid-19 infection in a patient as early and accurately as possible so that the spread of this viral infection can be slowed down. Hence, based on the Computed Tomography (CT) scans or chest X-rays provided by the user as an input, the DL models are built that can forecast the presence of Covid-19 in that respective patient accurately and efficiently. In this paper, 5 DL models i.e., VGG16, InceptionV3, Xception, ResNet50, and Convolution Neural Networks (CNN) are built and their comparative analysis is carried out for the diagnosis of Covid-19. On the Google Colab GPU, the models are trained for 100 epochs on a total of 1686 images of chest X-rays and CT scans. The experimental results show that out of all these models, the model based on the Xception algorithm is the most accurate one in determining the presence of the disease and provides an accuracy of 81% and 89% on CT scans and Chest x-rays respectively.\",\"PeriodicalId\":199675,\"journal\":{\"name\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549206.3549275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549206.3549275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在2019冠状病毒感染(Covid-19)大流行的全球卫生灾难中,卫生部门正在积极寻求新技术和新战略,以发现和管理冠状病毒疫情的传播。人工智能(AI)目前是全球技术最重要的方面之一,因为它可以跟踪和监测冠状病毒的发展速度,并确定冠状病毒患者的危险和严重程度。在本文中,我们提出了一个两阶段的端到端深度学习(DL)模型,该模型可用于尽早准确地预测患者中Covid-19感染的存在和严重程度,从而减缓这种病毒感染的传播。因此,基于用户提供的计算机断层扫描(CT)扫描或胸部x光片作为输入,构建DL模型,可以准确有效地预测相应患者体内是否存在Covid-19。本文建立了VGG16、InceptionV3、Xception、ResNet50和卷积神经网络(CNN) 5个深度学习模型,并对其进行对比分析,用于Covid-19的诊断。在谷歌Colab GPU上,这些模型在总共1686张胸部x光和CT扫描图像上进行了100次训练。实验结果表明,在所有这些模型中,基于Xception算法的模型在确定疾病存在方面是最准确的,在CT扫描和胸部x射线上的准确率分别为81%和89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Covid-19 using Deep Learning
In the global health disaster of the Coronavirus infection-2019 (Covid-19) pandemic, the health sector is avidly seeking new technologies and strategies to detect and manage the spread of the Coronavirus outbreak. Artificial Intelligence (AI) is currently one of the most essential aspects of global technology since it can track and monitor the rate at which the Coronavirus develops as well as determines the danger and severity of Coronavirus patients. In this paper, we have proposed a two-stage end-to-end Deep Learning (DL) model which can be used to predict the presence and severity of Covid-19 infection in a patient as early and accurately as possible so that the spread of this viral infection can be slowed down. Hence, based on the Computed Tomography (CT) scans or chest X-rays provided by the user as an input, the DL models are built that can forecast the presence of Covid-19 in that respective patient accurately and efficiently. In this paper, 5 DL models i.e., VGG16, InceptionV3, Xception, ResNet50, and Convolution Neural Networks (CNN) are built and their comparative analysis is carried out for the diagnosis of Covid-19. On the Google Colab GPU, the models are trained for 100 epochs on a total of 1686 images of chest X-rays and CT scans. The experimental results show that out of all these models, the model based on the Xception algorithm is the most accurate one in determining the presence of the disease and provides an accuracy of 81% and 89% on CT scans and Chest x-rays respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信