纹影和阴影图像流结构识别的边缘检测和机器学习方法

I. Znamenskaya, I. Doroshchenko, D. Tatarenkova
{"title":"纹影和阴影图像流结构识别的边缘检测和机器学习方法","authors":"I. Znamenskaya, I. Doroshchenko, D. Tatarenkova","doi":"10.51130/graphicon-2020-2-3-15","DOIUrl":null,"url":null,"abstract":"Schlieren, shadowgraph and other types of refraction-based techniques have been often used to study gas flow structures. They can capture strong density gradients, such as shock waves. Shock wave detection is a very important task in analyzing unsteady gas flows. High-speed imaging systems, including high-speed cameras, are widely used to record large arrays of shadowgraph images. To process large datasets of the high-speed shadowgraph images and automatically detect shock waves, convective plumes and other gas flow structures, two computer software systems based on the edge detection and machine learning with convolutional neural networks (CNN) were developed. The edge-detection software utilizes image filtering, noise removing, background image subtraction in the frequency domain and edge detection based on the Canny algorithm. The machine learning software is based on CNN. We developed two neural networks working together. The first one classifies the image dataset and finds images with shock waves. The other CNN solves the regression task and defines shock wave position (single number) based on image pixels tensor (3-D array of numbers) for each image. The supervised learning code based on example input-output pairs was developed to train models. It was shown, that the machine learning approach gives better results in shock wave detection accuracy, especially for low-quality images with a strong noise level. Software system for automated shadowgraph images processing and x-t curves of the shock wave and convective plume movement plotting was developed.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Edge Detection and Machine Learning Approach to Identify Flow Structures on Schlieren and Shadowgraph Images\",\"authors\":\"I. Znamenskaya, I. Doroshchenko, D. Tatarenkova\",\"doi\":\"10.51130/graphicon-2020-2-3-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schlieren, shadowgraph and other types of refraction-based techniques have been often used to study gas flow structures. They can capture strong density gradients, such as shock waves. Shock wave detection is a very important task in analyzing unsteady gas flows. High-speed imaging systems, including high-speed cameras, are widely used to record large arrays of shadowgraph images. To process large datasets of the high-speed shadowgraph images and automatically detect shock waves, convective plumes and other gas flow structures, two computer software systems based on the edge detection and machine learning with convolutional neural networks (CNN) were developed. The edge-detection software utilizes image filtering, noise removing, background image subtraction in the frequency domain and edge detection based on the Canny algorithm. The machine learning software is based on CNN. We developed two neural networks working together. The first one classifies the image dataset and finds images with shock waves. The other CNN solves the regression task and defines shock wave position (single number) based on image pixels tensor (3-D array of numbers) for each image. The supervised learning code based on example input-output pairs was developed to train models. It was shown, that the machine learning approach gives better results in shock wave detection accuracy, especially for low-quality images with a strong noise level. Software system for automated shadowgraph images processing and x-t curves of the shock wave and convective plume movement plotting was developed.\",\"PeriodicalId\":344054,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51130/graphicon-2020-2-3-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-3-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

纹影、影图和其他类型的基于折射的技术经常用于研究气体流动结构。它们可以捕捉到强烈的密度梯度,比如冲击波。激波检测是分析非定常气体流动的一项重要任务。高速成像系统,包括高速摄像机,被广泛用于记录大阵列的阴影图像。为了处理高速阴影图像的大型数据集并自动检测激波、对流羽流和其他气体流动结构,开发了基于边缘检测和卷积神经网络(CNN)机器学习的两种计算机软件系统。边缘检测软件采用图像滤波、去噪、频域背景图像减相和基于Canny算法的边缘检测。机器学习软件基于CNN。我们开发了两个协同工作的神经网络。第一种方法对图像数据集进行分类,找到带有激波的图像。另一个CNN解决回归任务,根据每个图像的图像像素张量(三维数字数组)定义激波位置(单个数字)。开发了基于样例输入输出对的监督学习代码来训练模型。研究表明,机器学习方法在冲击波检测精度方面取得了更好的结果,特别是对于具有强噪声水平的低质量图像。开发了自动阴影图像处理、激波x-t曲线和对流羽流运动绘图的软件系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Detection and Machine Learning Approach to Identify Flow Structures on Schlieren and Shadowgraph Images
Schlieren, shadowgraph and other types of refraction-based techniques have been often used to study gas flow structures. They can capture strong density gradients, such as shock waves. Shock wave detection is a very important task in analyzing unsteady gas flows. High-speed imaging systems, including high-speed cameras, are widely used to record large arrays of shadowgraph images. To process large datasets of the high-speed shadowgraph images and automatically detect shock waves, convective plumes and other gas flow structures, two computer software systems based on the edge detection and machine learning with convolutional neural networks (CNN) were developed. The edge-detection software utilizes image filtering, noise removing, background image subtraction in the frequency domain and edge detection based on the Canny algorithm. The machine learning software is based on CNN. We developed two neural networks working together. The first one classifies the image dataset and finds images with shock waves. The other CNN solves the regression task and defines shock wave position (single number) based on image pixels tensor (3-D array of numbers) for each image. The supervised learning code based on example input-output pairs was developed to train models. It was shown, that the machine learning approach gives better results in shock wave detection accuracy, especially for low-quality images with a strong noise level. Software system for automated shadowgraph images processing and x-t curves of the shock wave and convective plume movement plotting was developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信