健康记录数据集预测函数的计算复杂度分析

S. Sahunthala, A. Geetha, L. Parthiban
{"title":"健康记录数据集预测函数的计算复杂度分析","authors":"S. Sahunthala, A. Geetha, L. Parthiban","doi":"10.1109/ICECA49313.2020.9297598","DOIUrl":null,"url":null,"abstract":"Nowadays, XML database growth plays a vital role in many real time applications. XML database contains a collection of XML dataset. More analytical functions are applied to XML database by using Xquery. In real world, huge businesses are exchanging the data as XML data model. In general, space and time parameters are considered for Xquery processing in the database. In existing, the analytical operation is analyzed in eXist-DB and BaseX databases with the execution time of ORBDA dataset. In existing system, the prediction analysis operation is not supposed in the dataset. In this paper, Xquery is processed by using Riak database. Riak database produces better execution time than eXist-DB and BaseX. This research has analyzed the prediction operation for ORBDA dataset using machine learning approach. This paper uses various regression techniques to analyze the prediction operation. Machine learning approaches produce better accuracy in prediction. The query processing time is reduced than the existing approach. This research uses ORBDA dataset in demonstration.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysing Computational Complexity For Prediction Function In Health Record Dataset\",\"authors\":\"S. Sahunthala, A. Geetha, L. Parthiban\",\"doi\":\"10.1109/ICECA49313.2020.9297598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, XML database growth plays a vital role in many real time applications. XML database contains a collection of XML dataset. More analytical functions are applied to XML database by using Xquery. In real world, huge businesses are exchanging the data as XML data model. In general, space and time parameters are considered for Xquery processing in the database. In existing, the analytical operation is analyzed in eXist-DB and BaseX databases with the execution time of ORBDA dataset. In existing system, the prediction analysis operation is not supposed in the dataset. In this paper, Xquery is processed by using Riak database. Riak database produces better execution time than eXist-DB and BaseX. This research has analyzed the prediction operation for ORBDA dataset using machine learning approach. This paper uses various regression techniques to analyze the prediction operation. Machine learning approaches produce better accuracy in prediction. The query processing time is reduced than the existing approach. This research uses ORBDA dataset in demonstration.\",\"PeriodicalId\":297285,\"journal\":{\"name\":\"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA49313.2020.9297598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,XML数据库的增长在许多实时应用程序中起着至关重要的作用。XML数据库包含XML数据集的集合。通过使用Xquery将更多的分析功能应用到XML数据库中。在现实世界中,大型企业将数据作为XML数据模型进行交换。通常,空间和时间参数用于数据库中的Xquery处理。在eXist-DB和BaseX数据库中,以ORBDA数据集的执行时间对分析操作进行分析。在现有的系统中,数据集中不允许进行预测分析操作。本文使用Riak数据库对Xquery进行处理。Riak数据库的执行时间比eXist-DB和BaseX更好。本研究利用机器学习方法分析了ORBDA数据集的预测操作。本文运用各种回归技术对预测操作进行分析。机器学习方法可以提高预测的准确性。与现有方法相比,查询处理时间缩短了。本研究使用ORBDA数据集进行论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysing Computational Complexity For Prediction Function In Health Record Dataset
Nowadays, XML database growth plays a vital role in many real time applications. XML database contains a collection of XML dataset. More analytical functions are applied to XML database by using Xquery. In real world, huge businesses are exchanging the data as XML data model. In general, space and time parameters are considered for Xquery processing in the database. In existing, the analytical operation is analyzed in eXist-DB and BaseX databases with the execution time of ORBDA dataset. In existing system, the prediction analysis operation is not supposed in the dataset. In this paper, Xquery is processed by using Riak database. Riak database produces better execution time than eXist-DB and BaseX. This research has analyzed the prediction operation for ORBDA dataset using machine learning approach. This paper uses various regression techniques to analyze the prediction operation. Machine learning approaches produce better accuracy in prediction. The query processing time is reduced than the existing approach. This research uses ORBDA dataset in demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信