基于压缩采样的分散模态识别盲源分离

A. Sadhu, Bo Hu, S. Narasimhan
{"title":"基于压缩采样的分散模态识别盲源分离","authors":"A. Sadhu, Bo Hu, S. Narasimhan","doi":"10.1109/ISSPA.2012.6310463","DOIUrl":null,"url":null,"abstract":"Wireless sensing technology has gained significant attention in the field of structural health monitoring (SHM). Various decentralized modal identification methods have been developed employing wireless sensors. However, one of themajor bottlenecks - especially dealing with long-term SHM - is the large volume of transmitted data. To overcome this problem, we present compressed sensing as a data reduction preprocessing tool within the framework of blind source separation. The results of source separation are ultimately used for modal identification of linear structures under ambient vibrations. When used together with sparsifying time-frequency decompositions, we show that accurate modal identification results are possible with high compression ratios. The main novelty in the method proposed here is in the application of compressive sensing for decentralized modal identification of civil structures.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Blind source separation towards decentralized modal identification using compressive sampling\",\"authors\":\"A. Sadhu, Bo Hu, S. Narasimhan\",\"doi\":\"10.1109/ISSPA.2012.6310463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensing technology has gained significant attention in the field of structural health monitoring (SHM). Various decentralized modal identification methods have been developed employing wireless sensors. However, one of themajor bottlenecks - especially dealing with long-term SHM - is the large volume of transmitted data. To overcome this problem, we present compressed sensing as a data reduction preprocessing tool within the framework of blind source separation. The results of source separation are ultimately used for modal identification of linear structures under ambient vibrations. When used together with sparsifying time-frequency decompositions, we show that accurate modal identification results are possible with high compression ratios. The main novelty in the method proposed here is in the application of compressive sensing for decentralized modal identification of civil structures.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

无线传感技术在结构健康监测领域受到广泛关注。利用无线传感器开发了各种分散的模态识别方法。然而,主要的瓶颈之一——尤其是处理长期SHM——是传输的大量数据。为了克服这个问题,我们提出了压缩感知作为盲源分离框架下的数据约简预处理工具。源分离的结果最终用于环境振动下线性结构的模态识别。当与稀疏时频分解结合使用时,我们表明在高压缩比的情况下可以获得准确的模态识别结果。该方法的主要新颖之处在于将压缩感知应用于土木结构的分散模态识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind source separation towards decentralized modal identification using compressive sampling
Wireless sensing technology has gained significant attention in the field of structural health monitoring (SHM). Various decentralized modal identification methods have been developed employing wireless sensors. However, one of themajor bottlenecks - especially dealing with long-term SHM - is the large volume of transmitted data. To overcome this problem, we present compressed sensing as a data reduction preprocessing tool within the framework of blind source separation. The results of source separation are ultimately used for modal identification of linear structures under ambient vibrations. When used together with sparsifying time-frequency decompositions, we show that accurate modal identification results are possible with high compression ratios. The main novelty in the method proposed here is in the application of compressive sensing for decentralized modal identification of civil structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信