基于深度卷积神经网络的实时面部表情检测

Dr. S. Gomathi, P. H. Jaasmin, K. Lakshmi
{"title":"基于深度卷积神经网络的实时面部表情检测","authors":"Dr. S. Gomathi, P. H. Jaasmin, K. Lakshmi","doi":"10.56025/ijaresm.2022.10610","DOIUrl":null,"url":null,"abstract":"Facial Emotional Recognition is an interesting topic with a wide range of various applications such as image and video retrieval, automated tutoring systems, human-computer interaction, and driver warning systems. Facial expression is one of the nonverbal communication. With the help of analyzing human facial emotion, the inner feelings and real emotions of a person can be identified. Capturing the dynamics of facial expression progression in the video is an essential and challenging task for facial expression recognition (FER). The proposed system uses a new low-cost and multi-user framework based on big data analysis for patient feelings, where emotion is detected in terms of facial expression. A Faster region convolutional neural network (FRCNN) is applied to the whole facial observation to learn the global characteristics of six different expressions namely Happy, Sad, anger, surprise, and neutral. Finally, the Predicted emotions are shown as output.","PeriodicalId":365321,"journal":{"name":"International Journal of All Research Education & Scientific Methods","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Convolutional Neural Network for Real-Time Facial Expression Detection\",\"authors\":\"Dr. S. Gomathi, P. H. Jaasmin, K. Lakshmi\",\"doi\":\"10.56025/ijaresm.2022.10610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial Emotional Recognition is an interesting topic with a wide range of various applications such as image and video retrieval, automated tutoring systems, human-computer interaction, and driver warning systems. Facial expression is one of the nonverbal communication. With the help of analyzing human facial emotion, the inner feelings and real emotions of a person can be identified. Capturing the dynamics of facial expression progression in the video is an essential and challenging task for facial expression recognition (FER). The proposed system uses a new low-cost and multi-user framework based on big data analysis for patient feelings, where emotion is detected in terms of facial expression. A Faster region convolutional neural network (FRCNN) is applied to the whole facial observation to learn the global characteristics of six different expressions namely Happy, Sad, anger, surprise, and neutral. Finally, the Predicted emotions are shown as output.\",\"PeriodicalId\":365321,\"journal\":{\"name\":\"International Journal of All Research Education & Scientific Methods\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of All Research Education & Scientific Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56025/ijaresm.2022.10610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of All Research Education & Scientific Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56025/ijaresm.2022.10610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

面部情绪识别是一个有趣的话题,具有广泛的应用范围,如图像和视频检索,自动辅导系统,人机交互和驾驶员警告系统。面部表情是一种非语言交流。通过分析人的面部情绪,可以识别一个人的内心感受和真实情绪。捕捉视频中面部表情的动态变化是面部表情识别(FER)的一项重要且具有挑战性的任务。该系统采用了一种新的低成本多用户框架,该框架基于对患者情感的大数据分析,通过面部表情来检测情绪。将快速区域卷积神经网络(FRCNN)应用于整个面部观察,学习快乐、悲伤、愤怒、惊讶和中性六种不同表情的全局特征。最后,将预测的情绪显示为输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Convolutional Neural Network for Real-Time Facial Expression Detection
Facial Emotional Recognition is an interesting topic with a wide range of various applications such as image and video retrieval, automated tutoring systems, human-computer interaction, and driver warning systems. Facial expression is one of the nonverbal communication. With the help of analyzing human facial emotion, the inner feelings and real emotions of a person can be identified. Capturing the dynamics of facial expression progression in the video is an essential and challenging task for facial expression recognition (FER). The proposed system uses a new low-cost and multi-user framework based on big data analysis for patient feelings, where emotion is detected in terms of facial expression. A Faster region convolutional neural network (FRCNN) is applied to the whole facial observation to learn the global characteristics of six different expressions namely Happy, Sad, anger, surprise, and neutral. Finally, the Predicted emotions are shown as output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信