{"title":"基于qemu系统仿真器的内存计算指令集设计方法","authors":"Kévin Mambu, H. Charles, J. Dumas, Maha Kooli","doi":"10.1109/rsp53691.2021.9806255","DOIUrl":null,"url":null,"abstract":"In-Memory Computing (IMC) is a promising paradigm to mitigate the von Neumann bottleneck. However its evaluation on complete applications in the context of full-scale systems is limited by the complexity of simulation frameworks as well is the disjunction between hardware exploration and compiler support. This paper proposes a global exploration flow in the scale of Instruction Set Architectures (ISA) to perform both modeling and the generation of compiler support to perform ISA-level exploration. Our emulation methodology is based on QEMU, implements a performance model based on hardware characterizations from the State-of-the-Art, and allows the modeling of cache hierarchies, while our compiler support is automatically generated and based on a specialized compiler. We evaluate three applications in the domains of image processing and linear algebra on a reference IMC architecture, and analyze the obtained results to validate our methodology.","PeriodicalId":229411,"journal":{"name":"2021 IEEE International Workshop on Rapid System Prototyping (RSP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Instruction Set Design Methodology for In-Memory Computing through QEMU-based System Emulator\",\"authors\":\"Kévin Mambu, H. Charles, J. Dumas, Maha Kooli\",\"doi\":\"10.1109/rsp53691.2021.9806255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-Memory Computing (IMC) is a promising paradigm to mitigate the von Neumann bottleneck. However its evaluation on complete applications in the context of full-scale systems is limited by the complexity of simulation frameworks as well is the disjunction between hardware exploration and compiler support. This paper proposes a global exploration flow in the scale of Instruction Set Architectures (ISA) to perform both modeling and the generation of compiler support to perform ISA-level exploration. Our emulation methodology is based on QEMU, implements a performance model based on hardware characterizations from the State-of-the-Art, and allows the modeling of cache hierarchies, while our compiler support is automatically generated and based on a specialized compiler. We evaluate three applications in the domains of image processing and linear algebra on a reference IMC architecture, and analyze the obtained results to validate our methodology.\",\"PeriodicalId\":229411,\"journal\":{\"name\":\"2021 IEEE International Workshop on Rapid System Prototyping (RSP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Workshop on Rapid System Prototyping (RSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rsp53691.2021.9806255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Workshop on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rsp53691.2021.9806255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Instruction Set Design Methodology for In-Memory Computing through QEMU-based System Emulator
In-Memory Computing (IMC) is a promising paradigm to mitigate the von Neumann bottleneck. However its evaluation on complete applications in the context of full-scale systems is limited by the complexity of simulation frameworks as well is the disjunction between hardware exploration and compiler support. This paper proposes a global exploration flow in the scale of Instruction Set Architectures (ISA) to perform both modeling and the generation of compiler support to perform ISA-level exploration. Our emulation methodology is based on QEMU, implements a performance model based on hardware characterizations from the State-of-the-Art, and allows the modeling of cache hierarchies, while our compiler support is automatically generated and based on a specialized compiler. We evaluate three applications in the domains of image processing and linear algebra on a reference IMC architecture, and analyze the obtained results to validate our methodology.