{"title":"SumajGAN:监督面部化妆转移与深层对手生成网络","authors":"Pedro Jesús Guzmán-Ramos, Wilfredo Mamani-Ticona","doi":"10.26439/ciis2020.5503","DOIUrl":null,"url":null,"abstract":"El reto de la transferencia de maquillaje de una imagen a otra ya está resuelto por los modelos BeautyGAN, PairedCycleGAN y BeautyGlow. Estos modelos lograron solucio nar el reto mencionado mediante un enfoque de aprendizaje semisupervisado; lo cual resuelve el problema de obtener un dataset alineado de maquillaje, pero a costa de un alto poder de cómputo. Por este motivo, en esta investigación se creó un dataset de imágenes alineadas y adicionalmente se propuso un modelo de transferencia de maquillaje mediante un enfoque supervisado. El dataset está compuesto por 5400 grupos de imágenes, cada grupo de imágenes se encuentra conformado por una imagen sin maquillaje, una imagen con maquillaje de referen cia y otra imagen con el maquillaje de la referencia y la identidad de la persona sin maquillaje. El modelo propuesto en esta investigación es llamado SumajGAN, el modelo se encuentra conformado por un discriminador de tipo PatchGAN y un generador de dos entradas inspi radas en un autoencoder. Se realizaron varios experimentos y el mejor resultado obtenido fue de 0,021658644 de error absoluto medio y alta resolución con una correcta transferencia de maquillaje. El modelo SumajGAN ha logrado realizar el objetivo planteado disminuyendo el tiempo de entrenamiento de modelos como BeautyGAN, PairedCycleGAN y BeautyGlow.","PeriodicalId":256978,"journal":{"name":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SumajGAN: transferencia supervisada de maquillaje facial con redes generativas adversarias profundas\",\"authors\":\"Pedro Jesús Guzmán-Ramos, Wilfredo Mamani-Ticona\",\"doi\":\"10.26439/ciis2020.5503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El reto de la transferencia de maquillaje de una imagen a otra ya está resuelto por los modelos BeautyGAN, PairedCycleGAN y BeautyGlow. Estos modelos lograron solucio nar el reto mencionado mediante un enfoque de aprendizaje semisupervisado; lo cual resuelve el problema de obtener un dataset alineado de maquillaje, pero a costa de un alto poder de cómputo. Por este motivo, en esta investigación se creó un dataset de imágenes alineadas y adicionalmente se propuso un modelo de transferencia de maquillaje mediante un enfoque supervisado. El dataset está compuesto por 5400 grupos de imágenes, cada grupo de imágenes se encuentra conformado por una imagen sin maquillaje, una imagen con maquillaje de referen cia y otra imagen con el maquillaje de la referencia y la identidad de la persona sin maquillaje. El modelo propuesto en esta investigación es llamado SumajGAN, el modelo se encuentra conformado por un discriminador de tipo PatchGAN y un generador de dos entradas inspi radas en un autoencoder. Se realizaron varios experimentos y el mejor resultado obtenido fue de 0,021658644 de error absoluto medio y alta resolución con una correcta transferencia de maquillaje. El modelo SumajGAN ha logrado realizar el objetivo planteado disminuyendo el tiempo de entrenamiento de modelos como BeautyGAN, PairedCycleGAN y BeautyGlow.\",\"PeriodicalId\":256978,\"journal\":{\"name\":\"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad\",\"volume\":\"281 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26439/ciis2020.5503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2020.5503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SumajGAN: transferencia supervisada de maquillaje facial con redes generativas adversarias profundas
El reto de la transferencia de maquillaje de una imagen a otra ya está resuelto por los modelos BeautyGAN, PairedCycleGAN y BeautyGlow. Estos modelos lograron solucio nar el reto mencionado mediante un enfoque de aprendizaje semisupervisado; lo cual resuelve el problema de obtener un dataset alineado de maquillaje, pero a costa de un alto poder de cómputo. Por este motivo, en esta investigación se creó un dataset de imágenes alineadas y adicionalmente se propuso un modelo de transferencia de maquillaje mediante un enfoque supervisado. El dataset está compuesto por 5400 grupos de imágenes, cada grupo de imágenes se encuentra conformado por una imagen sin maquillaje, una imagen con maquillaje de referen cia y otra imagen con el maquillaje de la referencia y la identidad de la persona sin maquillaje. El modelo propuesto en esta investigación es llamado SumajGAN, el modelo se encuentra conformado por un discriminador de tipo PatchGAN y un generador de dos entradas inspi radas en un autoencoder. Se realizaron varios experimentos y el mejor resultado obtenido fue de 0,021658644 de error absoluto medio y alta resolución con una correcta transferencia de maquillaje. El modelo SumajGAN ha logrado realizar el objetivo planteado disminuyendo el tiempo de entrenamiento de modelos como BeautyGAN, PairedCycleGAN y BeautyGlow.