基于粒子滤波的情境感知机器人系统跟踪与定位

Kun Wang, Xiaoping P. Liu
{"title":"基于粒子滤波的情境感知机器人系统跟踪与定位","authors":"Kun Wang, Xiaoping P. Liu","doi":"10.1109/ICCSE.2014.6926459","DOIUrl":null,"url":null,"abstract":"This paper develops the algorithm of human tracking and localization implemented on a context-aware robotic platform. The tracking and localization algorithm is developed using the Particle Filtering (PF) method, enhanced by the adaptive multi-model techniques and the entropy-based active sensing. The proposed solution is then utilized for human tracking and localization on a mobile robot platform. The feasibility and effectiveness of the entropy and multi-model based particle filtering method is demonstrated in the experimental results.","PeriodicalId":275003,"journal":{"name":"2014 9th International Conference on Computer Science & Education","volume":"65 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Particle Filtering-based tracking and localization on context-aware robotic system\",\"authors\":\"Kun Wang, Xiaoping P. Liu\",\"doi\":\"10.1109/ICCSE.2014.6926459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the algorithm of human tracking and localization implemented on a context-aware robotic platform. The tracking and localization algorithm is developed using the Particle Filtering (PF) method, enhanced by the adaptive multi-model techniques and the entropy-based active sensing. The proposed solution is then utilized for human tracking and localization on a mobile robot platform. The feasibility and effectiveness of the entropy and multi-model based particle filtering method is demonstrated in the experimental results.\",\"PeriodicalId\":275003,\"journal\":{\"name\":\"2014 9th International Conference on Computer Science & Education\",\"volume\":\"65 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 9th International Conference on Computer Science & Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2014.6926459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Science & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2014.6926459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文开发了一种在环境感知机器人平台上实现的人体跟踪和定位算法。在自适应多模型技术和基于熵的主动感知的基础上,采用粒子滤波(PF)方法开发了跟踪和定位算法。然后将提出的解决方案用于移动机器人平台上的人体跟踪和定位。实验结果验证了基于熵和多模型的粒子滤波方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Filtering-based tracking and localization on context-aware robotic system
This paper develops the algorithm of human tracking and localization implemented on a context-aware robotic platform. The tracking and localization algorithm is developed using the Particle Filtering (PF) method, enhanced by the adaptive multi-model techniques and the entropy-based active sensing. The proposed solution is then utilized for human tracking and localization on a mobile robot platform. The feasibility and effectiveness of the entropy and multi-model based particle filtering method is demonstrated in the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信