增材制造航天硬件的无损检测

C. Galleguillos, A. Periñán, S. A. González, F. Lasagni
{"title":"增材制造航天硬件的无损检测","authors":"C. Galleguillos, A. Periñán, S. A. González, F. Lasagni","doi":"10.58286/28124","DOIUrl":null,"url":null,"abstract":"\nX-Ray Computed Tomography (CT) has been established as the preferable NonDestructive Testing (NDT) method to detect inner defects in Metal Additive Manufactured (MAM) parts such as porosity, inclusions, lack of fusion, etc. Moreover, the usage of this manufacturing technology has grown in the aerospace sector due to the establishment of quality standards and the current maturity of the manufacturing systems, processing route and means of inspection. For instance, the European Cooperation for Space Standardization has developed a specific standard (coordinated by the European Space Agency – ESA) for AM quality assurance, processing, and requirements in space applications (ECSS-Q-ST-70-80C) indicating that CT inspections shall be carried out especially for critical structural and functional components. Similarly, large OEMs (Original Equipment Manufacturers) have developed their own standards considering CT as a mandatory NDT method in critical parts, but also other techniques such as Penetrant Testing (PT), Digital Radiography (DR) or visual inspection (VI) are also considered necessary to assure the quality of the components. This works presents diverse applications examples of different NDTs for hardware qualification: Titanium brackets for CHEOPS space missions; Aluminium helix antenna for PROBA3; Aluminium brackets for JUpiter ICy moons Explorer mission (JUICE), the last; or other aeronautic components like Aluminium fairings for the Clean Sky 2 IADP demonstrator, and structural Titanium flap fittings of the RACER helicopter. The aforementioned cases will be analysed not only from the execution of the inspection, but also from the application of different standards and requirements, specifically developed for AM or adapted to this novel manufacturing technology. \n","PeriodicalId":383798,"journal":{"name":"Research and Review Journal of Nondestructive Testing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NDT for qualification of space hardware made by additive manufacturing\",\"authors\":\"C. Galleguillos, A. Periñán, S. A. González, F. Lasagni\",\"doi\":\"10.58286/28124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nX-Ray Computed Tomography (CT) has been established as the preferable NonDestructive Testing (NDT) method to detect inner defects in Metal Additive Manufactured (MAM) parts such as porosity, inclusions, lack of fusion, etc. Moreover, the usage of this manufacturing technology has grown in the aerospace sector due to the establishment of quality standards and the current maturity of the manufacturing systems, processing route and means of inspection. For instance, the European Cooperation for Space Standardization has developed a specific standard (coordinated by the European Space Agency – ESA) for AM quality assurance, processing, and requirements in space applications (ECSS-Q-ST-70-80C) indicating that CT inspections shall be carried out especially for critical structural and functional components. Similarly, large OEMs (Original Equipment Manufacturers) have developed their own standards considering CT as a mandatory NDT method in critical parts, but also other techniques such as Penetrant Testing (PT), Digital Radiography (DR) or visual inspection (VI) are also considered necessary to assure the quality of the components. This works presents diverse applications examples of different NDTs for hardware qualification: Titanium brackets for CHEOPS space missions; Aluminium helix antenna for PROBA3; Aluminium brackets for JUpiter ICy moons Explorer mission (JUICE), the last; or other aeronautic components like Aluminium fairings for the Clean Sky 2 IADP demonstrator, and structural Titanium flap fittings of the RACER helicopter. The aforementioned cases will be analysed not only from the execution of the inspection, but also from the application of different standards and requirements, specifically developed for AM or adapted to this novel manufacturing technology. \\n\",\"PeriodicalId\":383798,\"journal\":{\"name\":\"Research and Review Journal of Nondestructive Testing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and Review Journal of Nondestructive Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58286/28124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Review Journal of Nondestructive Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58286/28124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

x射线计算机断层扫描(CT)已被确定为检测金属增材制造(MAM)零件内部缺陷(如孔隙、夹杂物、缺乏熔合等)的首选无损检测方法。此外,由于质量标准的建立以及目前制造系统、加工路线和检验手段的成熟,这种制造技术在航空航天领域的应用也有所增长。例如,欧洲空间标准化合作组织已经制定了一个特定的标准(由欧洲航天局- ESA协调),用于空间应用中的增材制造质量保证、加工和要求(ECSS-Q-ST-70-80C),表明应特别对关键结构和功能部件进行CT检查。同样,大型oem(原始设备制造商)已经制定了自己的标准,将CT作为关键部件的强制性无损检测方法,但其他技术,如渗透测试(PT),数字射线摄影(DR)或目视检查(VI)也被认为是确保组件质量所必需的。本文介绍了不同ndt在硬件鉴定中的不同应用实例:CHEOPS空间任务的钛支架;用于PROBA3的铝螺旋天线;最后一个木星冰卫星探测任务(JUICE)的铝制支架;或其他航空部件,如清洁天空2 IADP验证机的铝整流罩,以及RACER直升机的结构钛襟翼配件。上述案例不仅将从检查的执行中进行分析,还将从不同标准和要求的应用中进行分析,这些标准和要求是专门为增材制造开发的,或者是适应这种新型制造技术的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NDT for qualification of space hardware made by additive manufacturing
X-Ray Computed Tomography (CT) has been established as the preferable NonDestructive Testing (NDT) method to detect inner defects in Metal Additive Manufactured (MAM) parts such as porosity, inclusions, lack of fusion, etc. Moreover, the usage of this manufacturing technology has grown in the aerospace sector due to the establishment of quality standards and the current maturity of the manufacturing systems, processing route and means of inspection. For instance, the European Cooperation for Space Standardization has developed a specific standard (coordinated by the European Space Agency – ESA) for AM quality assurance, processing, and requirements in space applications (ECSS-Q-ST-70-80C) indicating that CT inspections shall be carried out especially for critical structural and functional components. Similarly, large OEMs (Original Equipment Manufacturers) have developed their own standards considering CT as a mandatory NDT method in critical parts, but also other techniques such as Penetrant Testing (PT), Digital Radiography (DR) or visual inspection (VI) are also considered necessary to assure the quality of the components. This works presents diverse applications examples of different NDTs for hardware qualification: Titanium brackets for CHEOPS space missions; Aluminium helix antenna for PROBA3; Aluminium brackets for JUpiter ICy moons Explorer mission (JUICE), the last; or other aeronautic components like Aluminium fairings for the Clean Sky 2 IADP demonstrator, and structural Titanium flap fittings of the RACER helicopter. The aforementioned cases will be analysed not only from the execution of the inspection, but also from the application of different standards and requirements, specifically developed for AM or adapted to this novel manufacturing technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信