Li-Min Meng, Lu-Sha Han, Hong Peng, Biaobiao Zhang, Ke-Lin Du
{"title":"城市交通状态检测的机器学习方法","authors":"Li-Min Meng, Lu-Sha Han, Hong Peng, Biaobiao Zhang, Ke-Lin Du","doi":"10.1109/ICICIP.2014.7010332","DOIUrl":null,"url":null,"abstract":"We propose an urban traffic state detection method based on support vector machine (SVM) and multilayer perception (MLP). Fusing the SVM and MLP classifiers into a cascade two-tier classifier improves the accuracy of the traffic state classification. A cascade two-tier classifier MLP-SVM, a single SVM classifier and a single MLP classifier are then fused to further improve the final detection accuracy. We also implement a Dempster-Shafer (D-S) theory of evidence based classifier. Finally, fusion strategies at the training and implementation phases are proposed to improve the detection accuracy.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A machine learning approach to urban traffic state detection\",\"authors\":\"Li-Min Meng, Lu-Sha Han, Hong Peng, Biaobiao Zhang, Ke-Lin Du\",\"doi\":\"10.1109/ICICIP.2014.7010332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an urban traffic state detection method based on support vector machine (SVM) and multilayer perception (MLP). Fusing the SVM and MLP classifiers into a cascade two-tier classifier improves the accuracy of the traffic state classification. A cascade two-tier classifier MLP-SVM, a single SVM classifier and a single MLP classifier are then fused to further improve the final detection accuracy. We also implement a Dempster-Shafer (D-S) theory of evidence based classifier. Finally, fusion strategies at the training and implementation phases are proposed to improve the detection accuracy.\",\"PeriodicalId\":408041,\"journal\":{\"name\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2014.7010332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A machine learning approach to urban traffic state detection
We propose an urban traffic state detection method based on support vector machine (SVM) and multilayer perception (MLP). Fusing the SVM and MLP classifiers into a cascade two-tier classifier improves the accuracy of the traffic state classification. A cascade two-tier classifier MLP-SVM, a single SVM classifier and a single MLP classifier are then fused to further improve the final detection accuracy. We also implement a Dempster-Shafer (D-S) theory of evidence based classifier. Finally, fusion strategies at the training and implementation phases are proposed to improve the detection accuracy.