相干预测改善NoCs的DVFS

R. Hesse, Natalie D. Enright Jerger
{"title":"相干预测改善NoCs的DVFS","authors":"R. Hesse, Natalie D. Enright Jerger","doi":"10.1145/2786572.2786595","DOIUrl":null,"url":null,"abstract":"As Networks-on-Chip (NoCs) continue to consume a large fraction of the total chip power budget, dynamic voltage and frequency scaling (DVFS) has evolved into an integral part of NoC designs. Efficient DVFS relies on accurate predictions of future network state. Most previous approaches are reactive and based on network-centric metrics, such as buffer occupation and channel utilization. However, we find that there is little correlation between those metrics and subsequent NoC traffic, which leads to suboptimal DVFS decisions. In this work, we propose to utilize highly predictable properties of cache-coherence communication to derive more specific and reliable NoC traffic predictions. A DVFS mechanism based on our traffic predictions, reduces power by 41% compared to a baseline without DVFS and by 21% on average when compared to a state-of-the-art DVFS implementation, while only degrading performance by 3%.","PeriodicalId":228605,"journal":{"name":"Proceedings of the 9th International Symposium on Networks-on-Chip","volume":"537 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Improving DVFS in NoCs with Coherence Prediction\",\"authors\":\"R. Hesse, Natalie D. Enright Jerger\",\"doi\":\"10.1145/2786572.2786595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Networks-on-Chip (NoCs) continue to consume a large fraction of the total chip power budget, dynamic voltage and frequency scaling (DVFS) has evolved into an integral part of NoC designs. Efficient DVFS relies on accurate predictions of future network state. Most previous approaches are reactive and based on network-centric metrics, such as buffer occupation and channel utilization. However, we find that there is little correlation between those metrics and subsequent NoC traffic, which leads to suboptimal DVFS decisions. In this work, we propose to utilize highly predictable properties of cache-coherence communication to derive more specific and reliable NoC traffic predictions. A DVFS mechanism based on our traffic predictions, reduces power by 41% compared to a baseline without DVFS and by 21% on average when compared to a state-of-the-art DVFS implementation, while only degrading performance by 3%.\",\"PeriodicalId\":228605,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Networks-on-Chip\",\"volume\":\"537 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Networks-on-Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2786572.2786595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786572.2786595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

随着片上网络(NoC)继续消耗芯片总功耗预算的很大一部分,动态电压和频率缩放(DVFS)已经发展成为NoC设计的一个组成部分。高效的DVFS依赖于对未来网络状态的准确预测。以前的大多数方法都是响应式的,并且基于以网络为中心的指标,例如缓冲区占用和通道利用率。然而,我们发现这些指标与随后的NoC流量之间几乎没有相关性,这导致了次优的DVFS决策。在这项工作中,我们建议利用缓存相干通信的高度可预测特性来获得更具体和可靠的NoC流量预测。基于流量预测的DVFS机制,与没有DVFS的基线相比,功耗降低41%,与最先进的DVFS实现相比,功耗平均降低21%,而性能仅降低3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving DVFS in NoCs with Coherence Prediction
As Networks-on-Chip (NoCs) continue to consume a large fraction of the total chip power budget, dynamic voltage and frequency scaling (DVFS) has evolved into an integral part of NoC designs. Efficient DVFS relies on accurate predictions of future network state. Most previous approaches are reactive and based on network-centric metrics, such as buffer occupation and channel utilization. However, we find that there is little correlation between those metrics and subsequent NoC traffic, which leads to suboptimal DVFS decisions. In this work, we propose to utilize highly predictable properties of cache-coherence communication to derive more specific and reliable NoC traffic predictions. A DVFS mechanism based on our traffic predictions, reduces power by 41% compared to a baseline without DVFS and by 21% on average when compared to a state-of-the-art DVFS implementation, while only degrading performance by 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信