基于最小离散准则的脑电诱发电位自适应盲估计

Wenqiang Guo, Mingjun Zhang
{"title":"基于最小离散准则的脑电诱发电位自适应盲估计","authors":"Wenqiang Guo, Mingjun Zhang","doi":"10.1109/BMEI.2013.6747016","DOIUrl":null,"url":null,"abstract":"Evoked potentials (EPs) have been widely used to quantify neurological system properties. Traditional EP analysis are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal processing. Conventional blind separation and estimation method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and Givens matrix. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"74 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive blind estimation of evoked potentials in EEG based on a minimum dispersion criterion\",\"authors\":\"Wenqiang Guo, Mingjun Zhang\",\"doi\":\"10.1109/BMEI.2013.6747016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evoked potentials (EPs) have been widely used to quantify neurological system properties. Traditional EP analysis are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal processing. Conventional blind separation and estimation method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and Givens matrix. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.\",\"PeriodicalId\":163211,\"journal\":{\"name\":\"2013 6th International Conference on Biomedical Engineering and Informatics\",\"volume\":\"74 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2013.6747016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

诱发电位(EPs)已被广泛用于量化神经系统特性。传统的EP分析是在EP背景噪声为高斯分布的条件下发展起来的。稳定分布是高斯分布的一种推广,在生物医学信号处理中比高斯分布更适合于脉冲噪声的建模。传统的诱发电位盲分离和估计方法是基于二阶统计量的。本文提出了一种基于最小色散准则和Givens矩阵的新算法。仿真实验表明,该算法比传统算法具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive blind estimation of evoked potentials in EEG based on a minimum dispersion criterion
Evoked potentials (EPs) have been widely used to quantify neurological system properties. Traditional EP analysis are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal processing. Conventional blind separation and estimation method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and Givens matrix. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信