{"title":"单片实时DKS","authors":"S. S. Leung, M. Shanblatt","doi":"10.1109/JRA.1987.1087106","DOIUrl":null,"url":null,"abstract":"The desire to add more intelligent functionality and enhanced real-time Control capability to robotic systems places a heavy demand on computational resources. Nascent application-specific VLSI technology offers an unprecedented opportunity to relieve this computational burden by implementing specific robotic functions directly in hardware. A VLSI architecture, designed to compute the direct kinematic solution (DKS) on a single chip, is described. The DKS chip features fixed-point calculation and on-chip generation of trigonometric functions. The calculation achieves the resolution required for most industrial applications. Innovative modifications of the conventional adder control and the form of the homogeneous transformation matrix have improved throughput. Simulation results indicate that speed improvements of several orders of magnitude in the kinematic computation are achievable with application-specific integrated circuit technology, compared to microprocessor implementation.","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"18 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Real-time DKS on a single chip\",\"authors\":\"S. S. Leung, M. Shanblatt\",\"doi\":\"10.1109/JRA.1987.1087106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The desire to add more intelligent functionality and enhanced real-time Control capability to robotic systems places a heavy demand on computational resources. Nascent application-specific VLSI technology offers an unprecedented opportunity to relieve this computational burden by implementing specific robotic functions directly in hardware. A VLSI architecture, designed to compute the direct kinematic solution (DKS) on a single chip, is described. The DKS chip features fixed-point calculation and on-chip generation of trigonometric functions. The calculation achieves the resolution required for most industrial applications. Innovative modifications of the conventional adder control and the form of the homogeneous transformation matrix have improved throughput. Simulation results indicate that speed improvements of several orders of magnitude in the kinematic computation are achievable with application-specific integrated circuit technology, compared to microprocessor implementation.\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"18 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JRA.1987.1087106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JRA.1987.1087106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The desire to add more intelligent functionality and enhanced real-time Control capability to robotic systems places a heavy demand on computational resources. Nascent application-specific VLSI technology offers an unprecedented opportunity to relieve this computational burden by implementing specific robotic functions directly in hardware. A VLSI architecture, designed to compute the direct kinematic solution (DKS) on a single chip, is described. The DKS chip features fixed-point calculation and on-chip generation of trigonometric functions. The calculation achieves the resolution required for most industrial applications. Innovative modifications of the conventional adder control and the form of the homogeneous transformation matrix have improved throughput. Simulation results indicate that speed improvements of several orders of magnitude in the kinematic computation are achievable with application-specific integrated circuit technology, compared to microprocessor implementation.