新的四元Reed-Muller码

J. Pujol, J. Rifà, F. Solov'eva
{"title":"新的四元Reed-Muller码","authors":"J. Pujol, J. Rifà, F. Solov'eva","doi":"10.1109/SIBIRCON.2008.4602620","DOIUrl":null,"url":null,"abstract":"Additive (Plotkin type) constructions are considered and used to obtain new families of additive codes. Applying these constructions new families of quaternary Reed-Muller codes are presented such that after using the Gray map the obtained codes have the same parameters as the classical binary linear Reed-Muller codes. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.","PeriodicalId":295946,"journal":{"name":"2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On new quaternary Reed-Muller codes\",\"authors\":\"J. Pujol, J. Rifà, F. Solov'eva\",\"doi\":\"10.1109/SIBIRCON.2008.4602620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive (Plotkin type) constructions are considered and used to obtain new families of additive codes. Applying these constructions new families of quaternary Reed-Muller codes are presented such that after using the Gray map the obtained codes have the same parameters as the classical binary linear Reed-Muller codes. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.\",\"PeriodicalId\":295946,\"journal\":{\"name\":\"2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBIRCON.2008.4602620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBIRCON.2008.4602620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

考虑了加性(Plotkin型)结构,并使用它来获得新的加性码族。利用这些构造提出了新的四元里德-穆勒码族,在使用灰度映射后得到的码具有与经典二进制线性里德-穆勒码相同的参数。为了使构造族中的对偶关系更加明显,引入了Kronecker内积的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On new quaternary Reed-Muller codes
Additive (Plotkin type) constructions are considered and used to obtain new families of additive codes. Applying these constructions new families of quaternary Reed-Muller codes are presented such that after using the Gray map the obtained codes have the same parameters as the classical binary linear Reed-Muller codes. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信