遗传规划中的适应度案例策略以提高系统辨识

M. Pacheco, Mario Graff, J. Cerdá
{"title":"遗传规划中的适应度案例策略以提高系统辨识","authors":"M. Pacheco, Mario Graff, J. Cerdá","doi":"10.1109/ROPEC.2013.6702728","DOIUrl":null,"url":null,"abstract":"This article discusses the use of genetic programming for system identification. To this end, several experiments have been realized using observations obtained from a power transformer. The proposed strategy is to maximize the likelihood of convergence when searching for the model of a particular system. A traditional strategy for system identification in Genetic Programming is to take all the observations and evaluate the process of evolution to find a system model instance. Contrary to this, the proposed methodology is based on a partial subset of the observations, and then this subset is incremented until reaching the total set of observations. Furthermore, for comparison purposes we have used Eureqa, an open genetic programming based software tool for system identification.","PeriodicalId":307120,"journal":{"name":"2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC)","volume":"14 26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fitness case strategy in genetic programming to improve system identification\",\"authors\":\"M. Pacheco, Mario Graff, J. Cerdá\",\"doi\":\"10.1109/ROPEC.2013.6702728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses the use of genetic programming for system identification. To this end, several experiments have been realized using observations obtained from a power transformer. The proposed strategy is to maximize the likelihood of convergence when searching for the model of a particular system. A traditional strategy for system identification in Genetic Programming is to take all the observations and evaluate the process of evolution to find a system model instance. Contrary to this, the proposed methodology is based on a partial subset of the observations, and then this subset is incremented until reaching the total set of observations. Furthermore, for comparison purposes we have used Eureqa, an open genetic programming based software tool for system identification.\",\"PeriodicalId\":307120,\"journal\":{\"name\":\"2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC)\",\"volume\":\"14 26\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2013.6702728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2013.6702728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了遗传规划在系统识别中的应用。为此,利用从电力变压器上获得的观测数据,实现了几个实验。提出的策略是在搜索特定系统的模型时最大化收敛的可能性。遗传规划中传统的系统识别策略是将所有的观测值和进化过程进行评估,以找到一个系统模型实例。与此相反,所提出的方法是基于观测值的部分子集,然后将该子集递增,直到达到观测值的总集。此外,为了进行比较,我们使用了Eureqa,这是一个基于开放式遗传编程的软件工具,用于系统识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fitness case strategy in genetic programming to improve system identification
This article discusses the use of genetic programming for system identification. To this end, several experiments have been realized using observations obtained from a power transformer. The proposed strategy is to maximize the likelihood of convergence when searching for the model of a particular system. A traditional strategy for system identification in Genetic Programming is to take all the observations and evaluate the process of evolution to find a system model instance. Contrary to this, the proposed methodology is based on a partial subset of the observations, and then this subset is incremented until reaching the total set of observations. Furthermore, for comparison purposes we have used Eureqa, an open genetic programming based software tool for system identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信