图像分割与数值数据库聚类算法分析

D. Galeana, H. Pacheco, A. Magadán
{"title":"图像分割与数值数据库聚类算法分析","authors":"D. Galeana, H. Pacheco, A. Magadán","doi":"10.1109/CERMA.2008.103","DOIUrl":null,"url":null,"abstract":"Clustering techniques are broadly used in research are as where pattern recognition is needed, like in signal processing, automatic voice analysis, computer vision, and data mining. However, for each specific problem, the adequate technique must be selected in order to achieve better results. In this paper, a comparative analysis between the three mostly used clustering techniques (k-means, ISODATA, and the sequential clustering algorithm) is presented. The goal of the analysis is to compare the efficiency of each algorithm applied to numerical databases and images. The results of the application of the algorithms to a set of 25 images (natural and artificial) and 5 numerical databases are presented and discussed.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of Clustering Algorithms for Image Segmentation and Numerical Databases\",\"authors\":\"D. Galeana, H. Pacheco, A. Magadán\",\"doi\":\"10.1109/CERMA.2008.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering techniques are broadly used in research are as where pattern recognition is needed, like in signal processing, automatic voice analysis, computer vision, and data mining. However, for each specific problem, the adequate technique must be selected in order to achieve better results. In this paper, a comparative analysis between the three mostly used clustering techniques (k-means, ISODATA, and the sequential clustering algorithm) is presented. The goal of the analysis is to compare the efficiency of each algorithm applied to numerical databases and images. The results of the application of the algorithms to a set of 25 images (natural and artificial) and 5 numerical databases are presented and discussed.\",\"PeriodicalId\":126172,\"journal\":{\"name\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2008.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

聚类技术广泛应用于需要模式识别的研究领域,如信号处理、自动语音分析、计算机视觉和数据挖掘等。然而,对于每一个具体的问题,必须选择适当的技术,以达到更好的结果。本文对常用的三种聚类技术(k-means、ISODATA和顺序聚类算法)进行了比较分析。分析的目的是比较应用于数值数据库和图像的每种算法的效率。本文给出并讨论了该算法在25幅自然和人工图像和5个数值数据库中的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Clustering Algorithms for Image Segmentation and Numerical Databases
Clustering techniques are broadly used in research are as where pattern recognition is needed, like in signal processing, automatic voice analysis, computer vision, and data mining. However, for each specific problem, the adequate technique must be selected in order to achieve better results. In this paper, a comparative analysis between the three mostly used clustering techniques (k-means, ISODATA, and the sequential clustering algorithm) is presented. The goal of the analysis is to compare the efficiency of each algorithm applied to numerical databases and images. The results of the application of the algorithms to a set of 25 images (natural and artificial) and 5 numerical databases are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信