基于递归神经网络的微尘预报

Sunwon Kang, Namgi Kim, Byoung-Dai Lee
{"title":"基于递归神经网络的微尘预报","authors":"Sunwon Kang, Namgi Kim, Byoung-Dai Lee","doi":"10.23919/ICACT.2019.8701978","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fine dust forecast model based on deep neural networks. The proposed model uses five kinds of air quality-related information as input variables and presents fine dust levels on an hourly basis. For training, we built training datasets by crawling air quality open data provided by the Korea Meteorological Administration and Seoul City. According to the experimental results, the proposed method achieved an RMSE of 8.966 for the prediction of fine dust levels after one hour.","PeriodicalId":226261,"journal":{"name":"2019 21st International Conference on Advanced Communication Technology (ICACT)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fine Dust Forecast Based on Recurrent Neural Networks\",\"authors\":\"Sunwon Kang, Namgi Kim, Byoung-Dai Lee\",\"doi\":\"10.23919/ICACT.2019.8701978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fine dust forecast model based on deep neural networks. The proposed model uses five kinds of air quality-related information as input variables and presents fine dust levels on an hourly basis. For training, we built training datasets by crawling air quality open data provided by the Korea Meteorological Administration and Seoul City. According to the experimental results, the proposed method achieved an RMSE of 8.966 for the prediction of fine dust levels after one hour.\",\"PeriodicalId\":226261,\"journal\":{\"name\":\"2019 21st International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 21st International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT.2019.8701978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2019.8701978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于深度神经网络的微尘预报模型。该模型使用五种与空气质量相关的信息作为输入变量,并以小时为单位显示细尘水平。对于训练,我们通过爬行韩国气象局和首尔市提供的空气质量开放数据来构建训练数据集。实验结果表明,该方法预测1 h后细尘水平的RMSE为8.966。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine Dust Forecast Based on Recurrent Neural Networks
In this paper, we propose a fine dust forecast model based on deep neural networks. The proposed model uses five kinds of air quality-related information as input variables and presents fine dust levels on an hourly basis. For training, we built training datasets by crawling air quality open data provided by the Korea Meteorological Administration and Seoul City. According to the experimental results, the proposed method achieved an RMSE of 8.966 for the prediction of fine dust levels after one hour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信