基于峰度分析的小波盲源分离

M. Y. Abbass, S. A. Abdelwahab, S. Diab, Bassiony. M. Salam, El-Sayed M. El-Rabaie, F. El-Samie, S. S. Haggag
{"title":"基于峰度分析的小波盲源分离","authors":"M. Y. Abbass, S. A. Abdelwahab, S. Diab, Bassiony. M. Salam, El-Sayed M. El-Rabaie, F. El-Samie, S. S. Haggag","doi":"10.1109/ICCTA32607.2013.9529537","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of blind separation of digital images from mixtures. It proposes a wavelet -based Independent Component Analysis (ICA) method using Kurtosis for blind image source separation. In this method, the observations are transformed into an adequate representation using wavelet packet decomposition and a Kurtosis criterion. The simulation results of performance measures show a considerable improvement when compared to the FastICA. The Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Segmental Signal-to-Noise Ratio (SNRseg) are used to evaluate the quality of the separated images.","PeriodicalId":405465,"journal":{"name":"2013 23rd International Conference on Computer Theory and Applications (ICCTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind Source Separation with Wavelet Based ICA Technique Using Kurtosis\",\"authors\":\"M. Y. Abbass, S. A. Abdelwahab, S. Diab, Bassiony. M. Salam, El-Sayed M. El-Rabaie, F. El-Samie, S. S. Haggag\",\"doi\":\"10.1109/ICCTA32607.2013.9529537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of blind separation of digital images from mixtures. It proposes a wavelet -based Independent Component Analysis (ICA) method using Kurtosis for blind image source separation. In this method, the observations are transformed into an adequate representation using wavelet packet decomposition and a Kurtosis criterion. The simulation results of performance measures show a considerable improvement when compared to the FastICA. The Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Segmental Signal-to-Noise Ratio (SNRseg) are used to evaluate the quality of the separated images.\",\"PeriodicalId\":405465,\"journal\":{\"name\":\"2013 23rd International Conference on Computer Theory and Applications (ICCTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Computer Theory and Applications (ICCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA32607.2013.9529537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA32607.2013.9529537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了数字图像与混合图像的盲分离问题。提出了一种基于小波独立分量分析(ICA)的峰度盲图像源分离方法。在这种方法中,使用小波包分解和峰度准则将观测值转换为适当的表示。性能测量的仿真结果表明,与FastICA相比,该方法有了相当大的改进。用信噪比(SNR)、峰值信噪比(PSNR)、均方根误差(RMSE)和片段信噪比(SNRseg)来评价分离图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Source Separation with Wavelet Based ICA Technique Using Kurtosis
This paper deals with the problem of blind separation of digital images from mixtures. It proposes a wavelet -based Independent Component Analysis (ICA) method using Kurtosis for blind image source separation. In this method, the observations are transformed into an adequate representation using wavelet packet decomposition and a Kurtosis criterion. The simulation results of performance measures show a considerable improvement when compared to the FastICA. The Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Segmental Signal-to-Noise Ratio (SNRseg) are used to evaluate the quality of the separated images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信