一种水声OFDM信道估计的机器学习无标签方法

Yonglin Zhang, Haibin Wang, Yupeng Tai, Chao Li, Fabrice Mériaudeau
{"title":"一种水声OFDM信道估计的机器学习无标签方法","authors":"Yonglin Zhang, Haibin Wang, Yupeng Tai, Chao Li, Fabrice Mériaudeau","doi":"10.1145/3491315.3491326","DOIUrl":null,"url":null,"abstract":"In this paper, a machine learning label-free scheme is proposed for underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) channel estimation, which avoids the necessity of the real UWA channel label as in the traditional training process. To this end, a label-free loss function is developed, based on which the training process requires only the received pilot symbols without true channel information. The experiments indicate that, with sufficient training, the proposed label-free network can perform a near-optimal channel estimation.","PeriodicalId":191580,"journal":{"name":"Proceedings of the 15th International Conference on Underwater Networks & Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Machine Learning Label-Free Method for Underwater Acoustic OFDM Channel Estimations\",\"authors\":\"Yonglin Zhang, Haibin Wang, Yupeng Tai, Chao Li, Fabrice Mériaudeau\",\"doi\":\"10.1145/3491315.3491326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a machine learning label-free scheme is proposed for underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) channel estimation, which avoids the necessity of the real UWA channel label as in the traditional training process. To this end, a label-free loss function is developed, based on which the training process requires only the received pilot symbols without true channel information. The experiments indicate that, with sufficient training, the proposed label-free network can perform a near-optimal channel estimation.\",\"PeriodicalId\":191580,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491315.3491326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491315.3491326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于水声正交频分复用(OFDM)信道估计的机器学习无标记方案,避免了传统训练过程中对真实UWA信道进行标记的必要性。为此,开发了无标签损失函数,在此基础上,训练过程只需要接收到的导频符号,而不需要真正的信道信息。实验表明,在充分训练的情况下,所提出的无标签网络可以进行接近最优的信道估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Label-Free Method for Underwater Acoustic OFDM Channel Estimations
In this paper, a machine learning label-free scheme is proposed for underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) channel estimation, which avoids the necessity of the real UWA channel label as in the traditional training process. To this end, a label-free loss function is developed, based on which the training process requires only the received pilot symbols without true channel information. The experiments indicate that, with sufficient training, the proposed label-free network can perform a near-optimal channel estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信