{"title":"水稻植物在CNN使用vgg19建筑将其病征分类","authors":"","doi":"10.22216/jsi.v9i1.2175","DOIUrl":null,"url":null,"abstract":"Penurunan produksi padi disebabkan oleh serangan hama dan penyakit yang biasa terdapat pada bagian daun. Penelitian terkait klasifikasi jenis penyakit daun padi telah banyak dilakukan. Penelitian ini menerapkan metode Convolutional Neural Network (CNN) dengan arsitektur VGG-19 untuk klasifikasi citra penyakit daun tanaman padi. Tujuan penelitian ini adalah untuk membandingkan hasil akurasi pengujian dari model yang menggunakan augmentasi dan tanpa augmentasi data. Data pada penelitian ini terbagi atas 4 kelas, yaitu blast, brown spot, leaf smut, dan healthy dengan jumlah data asli sebanyak 440 dan data augmentasi sebanyak 1320 citra. Hasil pengujian menunjukkan bahwa akurasi tertinggi menggunakan augmentasi data yang diperoleh sebesar 94.31%, sedangkan akurasi tertinggi tanpa augmentasi data yang diperoleh sebesar 93.18%. Hasil penelitian menunjukkan bahwa augmentasi dapat meningkatkan hasil akurasi. Penggunaan optimizer Nadam menghasilkan nilai akurasi yang lebih tinggi dibandingkan Adamax. Hyper Parameter yang digunakan juga berpengaruh terhadap hasil akurasi pengujian.","PeriodicalId":426758,"journal":{"name":"Jurnal Sains dan Informatika","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Klasifikasi Citra Penyakit Daun Tanaman Padi Menggunakan CNN dengan Arsitektur VGG-19\",\"authors\":\"\",\"doi\":\"10.22216/jsi.v9i1.2175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penurunan produksi padi disebabkan oleh serangan hama dan penyakit yang biasa terdapat pada bagian daun. Penelitian terkait klasifikasi jenis penyakit daun padi telah banyak dilakukan. Penelitian ini menerapkan metode Convolutional Neural Network (CNN) dengan arsitektur VGG-19 untuk klasifikasi citra penyakit daun tanaman padi. Tujuan penelitian ini adalah untuk membandingkan hasil akurasi pengujian dari model yang menggunakan augmentasi dan tanpa augmentasi data. Data pada penelitian ini terbagi atas 4 kelas, yaitu blast, brown spot, leaf smut, dan healthy dengan jumlah data asli sebanyak 440 dan data augmentasi sebanyak 1320 citra. Hasil pengujian menunjukkan bahwa akurasi tertinggi menggunakan augmentasi data yang diperoleh sebesar 94.31%, sedangkan akurasi tertinggi tanpa augmentasi data yang diperoleh sebesar 93.18%. Hasil penelitian menunjukkan bahwa augmentasi dapat meningkatkan hasil akurasi. Penggunaan optimizer Nadam menghasilkan nilai akurasi yang lebih tinggi dibandingkan Adamax. Hyper Parameter yang digunakan juga berpengaruh terhadap hasil akurasi pengujian.\",\"PeriodicalId\":426758,\"journal\":{\"name\":\"Jurnal Sains dan Informatika\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sains dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22216/jsi.v9i1.2175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22216/jsi.v9i1.2175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
水稻产量的下降是由树叶中常见的害虫和疾病引起的。有关水稻类疾病分类的研究已广泛进行。该研究采用vgg19结构结构的神经通路网络(CNN)的方法对水稻叶疾病进行分类。本研究的目的是比较使用augg和没有数据增强的模型的测试准确率。本研究的数据分为四类:blast, brown spot, leaf smut,以及1320个原始数据的健康状况。最高精度测试结果表明,使用增强获得的数据高达94。发电量最高精度,而没有获得增强的数据高达93,增长率是18%。研究结果表明,增强后可以增加准确性。Nadam优化器的使用比Adamax更准确。使用的超参数也影响测试结果的准确性。
Klasifikasi Citra Penyakit Daun Tanaman Padi Menggunakan CNN dengan Arsitektur VGG-19
Penurunan produksi padi disebabkan oleh serangan hama dan penyakit yang biasa terdapat pada bagian daun. Penelitian terkait klasifikasi jenis penyakit daun padi telah banyak dilakukan. Penelitian ini menerapkan metode Convolutional Neural Network (CNN) dengan arsitektur VGG-19 untuk klasifikasi citra penyakit daun tanaman padi. Tujuan penelitian ini adalah untuk membandingkan hasil akurasi pengujian dari model yang menggunakan augmentasi dan tanpa augmentasi data. Data pada penelitian ini terbagi atas 4 kelas, yaitu blast, brown spot, leaf smut, dan healthy dengan jumlah data asli sebanyak 440 dan data augmentasi sebanyak 1320 citra. Hasil pengujian menunjukkan bahwa akurasi tertinggi menggunakan augmentasi data yang diperoleh sebesar 94.31%, sedangkan akurasi tertinggi tanpa augmentasi data yang diperoleh sebesar 93.18%. Hasil penelitian menunjukkan bahwa augmentasi dapat meningkatkan hasil akurasi. Penggunaan optimizer Nadam menghasilkan nilai akurasi yang lebih tinggi dibandingkan Adamax. Hyper Parameter yang digunakan juga berpengaruh terhadap hasil akurasi pengujian.