使用降维多项式混沌和参数方差分析的混合认知-认知不确定性量化

A. Prasad, Sourajeet Roy
{"title":"使用降维多项式混沌和参数方差分析的混合认知-认知不确定性量化","authors":"A. Prasad, Sourajeet Roy","doi":"10.1109/EPEPS.2017.8329716","DOIUrl":null,"url":null,"abstract":"In this paper, a reduced dimensional PC approach is presented to model the impact of both aleatory (random) and epistemic (ignorance based) uncertainty on the response of distributed transmission line networks. The key feature of this approach is the development of a parameterized analysis of variance (PANOVA) strategy to identify which of the aleatory dimensions have minimal impact on the response of the network over the entire multidimensional support of the epistemic dimensions. By removing these statistically insignificant dimensions, a highly compact PC representation of the response can be developed to capture the mixed epistemic-aleatory effects.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed epistemic-aleatory uncertainty quantification using reduced dimensional polynomial chaos and parametric ANOVA\",\"authors\":\"A. Prasad, Sourajeet Roy\",\"doi\":\"10.1109/EPEPS.2017.8329716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a reduced dimensional PC approach is presented to model the impact of both aleatory (random) and epistemic (ignorance based) uncertainty on the response of distributed transmission line networks. The key feature of this approach is the development of a parameterized analysis of variance (PANOVA) strategy to identify which of the aleatory dimensions have minimal impact on the response of the network over the entire multidimensional support of the epistemic dimensions. By removing these statistically insignificant dimensions, a highly compact PC representation of the response can be developed to capture the mixed epistemic-aleatory effects.\",\"PeriodicalId\":397179,\"journal\":{\"name\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2017.8329716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种降维PC方法来模拟随机不确定性和无知不确定性对分布式输电网络响应的影响。该方法的关键特征是开发了参数化方差分析(PANOVA)策略,以确定在认知维度的整个多维支持上,哪些认知维度对网络的响应影响最小。通过去除这些统计上不显著的维度,可以开发出响应的高度紧凑的PC表示,以捕获混合的认知-变异效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed epistemic-aleatory uncertainty quantification using reduced dimensional polynomial chaos and parametric ANOVA
In this paper, a reduced dimensional PC approach is presented to model the impact of both aleatory (random) and epistemic (ignorance based) uncertainty on the response of distributed transmission line networks. The key feature of this approach is the development of a parameterized analysis of variance (PANOVA) strategy to identify which of the aleatory dimensions have minimal impact on the response of the network over the entire multidimensional support of the epistemic dimensions. By removing these statistically insignificant dimensions, a highly compact PC representation of the response can be developed to capture the mixed epistemic-aleatory effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信