{"title":"一类不确定非线性系统的约束最优控制","authors":"Jie Ding, S. Balakrishnan","doi":"10.1109/ACC.2011.5990893","DOIUrl":null,"url":null,"abstract":"Approximate dynamic programming formulation (ADP) implemented with an Adaptive Critic (AC) based neural network (NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman (HJB) equations. As interest in the ADP and the AC solutions are escalating, there is a dire need to consider enabling factors for their possible implementations. A typical AC structure consists of two interacting NNs which is computationally expensive. In this paper, a new architecture, called the \"Cost Function Based Single Network Adaptive Critic (J-SNAC)\" is presented that eliminates one of the networks in a typical AC structure. This approach is applicable to a wide class of nonlinear systems in engineering. Many real-life problems have controller limits. In this paper, a non-quadratic cost function is used that incorporates the control constraints. Necessary equations for optimal control are derived and an algorithm to solve the constrained-control problem with J-SNAC is developed. A benchmark nonlinear system is used to illustrate the working of the proposed technique. Extensions to optimal control constrained problems in the presence of uncertainties are also considered.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained optimal control for a class of nonlinear systems with uncertainties\",\"authors\":\"Jie Ding, S. Balakrishnan\",\"doi\":\"10.1109/ACC.2011.5990893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate dynamic programming formulation (ADP) implemented with an Adaptive Critic (AC) based neural network (NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman (HJB) equations. As interest in the ADP and the AC solutions are escalating, there is a dire need to consider enabling factors for their possible implementations. A typical AC structure consists of two interacting NNs which is computationally expensive. In this paper, a new architecture, called the \\\"Cost Function Based Single Network Adaptive Critic (J-SNAC)\\\" is presented that eliminates one of the networks in a typical AC structure. This approach is applicable to a wide class of nonlinear systems in engineering. Many real-life problems have controller limits. In this paper, a non-quadratic cost function is used that incorporates the control constraints. Necessary equations for optimal control are derived and an algorithm to solve the constrained-control problem with J-SNAC is developed. A benchmark nonlinear system is used to illustrate the working of the proposed technique. Extensions to optimal control constrained problems in the presence of uncertainties are also considered.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5990893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5990893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constrained optimal control for a class of nonlinear systems with uncertainties
Approximate dynamic programming formulation (ADP) implemented with an Adaptive Critic (AC) based neural network (NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman (HJB) equations. As interest in the ADP and the AC solutions are escalating, there is a dire need to consider enabling factors for their possible implementations. A typical AC structure consists of two interacting NNs which is computationally expensive. In this paper, a new architecture, called the "Cost Function Based Single Network Adaptive Critic (J-SNAC)" is presented that eliminates one of the networks in a typical AC structure. This approach is applicable to a wide class of nonlinear systems in engineering. Many real-life problems have controller limits. In this paper, a non-quadratic cost function is used that incorporates the control constraints. Necessary equations for optimal control are derived and an algorithm to solve the constrained-control problem with J-SNAC is developed. A benchmark nonlinear system is used to illustrate the working of the proposed technique. Extensions to optimal control constrained problems in the presence of uncertainties are also considered.