利用神经网络技术对杨桃成熟度进行分类

K. A. Ahmad, N. Abdullah, M. K. Osman, S. N. Sulaiman, M. F. Abdullah, Z. Hussain
{"title":"利用神经网络技术对杨桃成熟度进行分类","authors":"K. A. Ahmad, N. Abdullah, M. K. Osman, S. N. Sulaiman, M. F. Abdullah, Z. Hussain","doi":"10.1109/ICCSCE50387.2020.9204929","DOIUrl":null,"url":null,"abstract":"Starfruit is one of tropical food has been exported by Malaysia country to Europe, Middle East and Canada. The demand for this fruit is high. The exported fruits have been graded by FAMA. The graded system for starfruit ripeness is manually done by a human. The human cannot cope with high demand graded the ripeness of starfruit. This paper proposed a classification of starfruit ripeness system using artificial neural network. The methodology of image processing has successfully demonstrated. The segmentation technique using a Euclidean distance metric has been demonstrated. The classification using a sigmoid activation function in ANN improved the recognition system. The classification system has an accuracy of 97.33%. The system can recognize the unripe, ripe and overripe of starfruit.","PeriodicalId":193240,"journal":{"name":"2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification of Starfruit Ripeness using Neural Network Technique\",\"authors\":\"K. A. Ahmad, N. Abdullah, M. K. Osman, S. N. Sulaiman, M. F. Abdullah, Z. Hussain\",\"doi\":\"10.1109/ICCSCE50387.2020.9204929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starfruit is one of tropical food has been exported by Malaysia country to Europe, Middle East and Canada. The demand for this fruit is high. The exported fruits have been graded by FAMA. The graded system for starfruit ripeness is manually done by a human. The human cannot cope with high demand graded the ripeness of starfruit. This paper proposed a classification of starfruit ripeness system using artificial neural network. The methodology of image processing has successfully demonstrated. The segmentation technique using a Euclidean distance metric has been demonstrated. The classification using a sigmoid activation function in ANN improved the recognition system. The classification system has an accuracy of 97.33%. The system can recognize the unripe, ripe and overripe of starfruit.\",\"PeriodicalId\":193240,\"journal\":{\"name\":\"2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE50387.2020.9204929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE50387.2020.9204929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

海星果是一种热带食品,已被马来西亚出口到欧洲、中东和加拿大。这种水果的需求量很大。出口水果已被FAMA分级。杨桃成熟度分级系统是由人类手动完成的。人类无法应付对成熟度分级的高要求的杨桃。提出了一种基于人工神经网络的杨桃成熟度系统分类方法。成功地演示了图像处理的方法。分割技术使用欧几里得距离度量已被证明。利用人工神经网络中的s型激活函数进行分类,对识别系统进行了改进。该分类系统的准确率为97.33%。该系统能对杨桃的未熟、熟、过熟进行识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Starfruit Ripeness using Neural Network Technique
Starfruit is one of tropical food has been exported by Malaysia country to Europe, Middle East and Canada. The demand for this fruit is high. The exported fruits have been graded by FAMA. The graded system for starfruit ripeness is manually done by a human. The human cannot cope with high demand graded the ripeness of starfruit. This paper proposed a classification of starfruit ripeness system using artificial neural network. The methodology of image processing has successfully demonstrated. The segmentation technique using a Euclidean distance metric has been demonstrated. The classification using a sigmoid activation function in ANN improved the recognition system. The classification system has an accuracy of 97.33%. The system can recognize the unripe, ripe and overripe of starfruit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信