高阶σ - δ调制器环滤波器在Z和S域的平行形式表示

G. Tsenov, V. Mladenov
{"title":"高阶σ - δ调制器环滤波器在Z和S域的平行形式表示","authors":"G. Tsenov, V. Mladenov","doi":"10.1109/INDS.2011.6024819","DOIUrl":null,"url":null,"abstract":"In this paper we present the conversion of arbitrary high order sigma-delta modulator Z-domain loopfilter transfer function into parallel form low order subsections in both S and Z domains. The benefit of this type filter form representation is the existence of theory that can validate sigma-delta modulator's stability. The S domain filter representation is suitable for analog schematic element value calculation stage done according to the utilized transfer function when direct analogue parallel loopfilter implementation is performed.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher order sigma-delta modulator loopfilter paralel form representation in Z and S domain\",\"authors\":\"G. Tsenov, V. Mladenov\",\"doi\":\"10.1109/INDS.2011.6024819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the conversion of arbitrary high order sigma-delta modulator Z-domain loopfilter transfer function into parallel form low order subsections in both S and Z domains. The benefit of this type filter form representation is the existence of theory that can validate sigma-delta modulator's stability. The S domain filter representation is suitable for analog schematic element value calculation stage done according to the utilized transfer function when direct analogue parallel loopfilter implementation is performed.\",\"PeriodicalId\":117809,\"journal\":{\"name\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDS.2011.6024819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了任意高阶σ - δ调制器Z域环滤波器传递函数在S域和Z域中以低阶分段的形式转化为并行传递函数的方法。这种滤波器形式表示的好处是有理论可以验证σ - δ调制器的稳定性。S域滤波器表示适用于直接模拟并行环滤波器实现时根据所利用的传递函数进行模拟原理图元件值计算阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order sigma-delta modulator loopfilter paralel form representation in Z and S domain
In this paper we present the conversion of arbitrary high order sigma-delta modulator Z-domain loopfilter transfer function into parallel form low order subsections in both S and Z domains. The benefit of this type filter form representation is the existence of theory that can validate sigma-delta modulator's stability. The S domain filter representation is suitable for analog schematic element value calculation stage done according to the utilized transfer function when direct analogue parallel loopfilter implementation is performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信