深度神经网络函数的电流模式模拟实现

Shihao Wang, K. M. Al-Tamimi, Issam Hammad, K. El-Sankary
{"title":"深度神经网络函数的电流模式模拟实现","authors":"Shihao Wang, K. M. Al-Tamimi, Issam Hammad, K. El-Sankary","doi":"10.1109/NEWCAS52662.2022.9842017","DOIUrl":null,"url":null,"abstract":"This paper proposes a current-mode analog circuit design that operates in the subthreshold region to implement various Deep Neural Network (DNN) functions. The implemented circuit blocks include binary weight multiplier layer, Rectified Linear Unit (ReLU), and approximate Softmax layer. The proposed designs were implemented using 180nm CMOS technology with a 1.5V power supply. Furthermore, the impact of the proposed design on accuracy was simulated using the MNIST dataset. Using a four layers Convolutional Neural Network (CNN) with an 8 bits resolution, the design achieved an accuracy of 99.02% with 68.21uW power consumption, which is 35.65% lower than the existing analog DNN design.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"55 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Current-Mode Analog Implementation of Deep Neural Network Functions\",\"authors\":\"Shihao Wang, K. M. Al-Tamimi, Issam Hammad, K. El-Sankary\",\"doi\":\"10.1109/NEWCAS52662.2022.9842017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a current-mode analog circuit design that operates in the subthreshold region to implement various Deep Neural Network (DNN) functions. The implemented circuit blocks include binary weight multiplier layer, Rectified Linear Unit (ReLU), and approximate Softmax layer. The proposed designs were implemented using 180nm CMOS technology with a 1.5V power supply. Furthermore, the impact of the proposed design on accuracy was simulated using the MNIST dataset. Using a four layers Convolutional Neural Network (CNN) with an 8 bits resolution, the design achieved an accuracy of 99.02% with 68.21uW power consumption, which is 35.65% lower than the existing analog DNN design.\",\"PeriodicalId\":198335,\"journal\":{\"name\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"volume\":\"55 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS52662.2022.9842017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种工作在阈下区域的电流模模拟电路设计,以实现深度神经网络(DNN)的各种功能。所实现的电路模块包括二进制权重乘法器层、整流线性单元(ReLU)和近似Softmax层。提出的设计采用180nm CMOS技术和1.5V电源实现。此外,利用MNIST数据集模拟了所提出的设计对精度的影响。该设计采用8位分辨率的四层卷积神经网络(CNN),在68.21uW的功耗下实现了99.02%的准确率,比现有模拟DNN设计降低了35.65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Current-Mode Analog Implementation of Deep Neural Network Functions
This paper proposes a current-mode analog circuit design that operates in the subthreshold region to implement various Deep Neural Network (DNN) functions. The implemented circuit blocks include binary weight multiplier layer, Rectified Linear Unit (ReLU), and approximate Softmax layer. The proposed designs were implemented using 180nm CMOS technology with a 1.5V power supply. Furthermore, the impact of the proposed design on accuracy was simulated using the MNIST dataset. Using a four layers Convolutional Neural Network (CNN) with an 8 bits resolution, the design achieved an accuracy of 99.02% with 68.21uW power consumption, which is 35.65% lower than the existing analog DNN design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信