选项学习的类人动作分割

Jaeeun Shim, A. Thomaz
{"title":"选项学习的类人动作分割","authors":"Jaeeun Shim, A. Thomaz","doi":"10.1109/ROMAN.2011.6005277","DOIUrl":null,"url":null,"abstract":"Robots learning interactively with a human partner has several open questions, one of which is increasing the efficiency of learning. One approach to this problem in the Reinforcement Learning domain is to use options, temporally extended actions, instead of primitive actions. In this paper, we aim to develop a robot system that can discriminate meaningful options from observations of human use of low-level primitive actions. Our approach is inspired by psychological findings about human action parsing, which posits that we attend to low-level statistical regularities to determine action boundary choices. We implement a human-like action segmentation system for automatic option discovery and evaluate our approach and show that option-based learning converges to the optimal solutions faster compared with primitive-action-based learning.","PeriodicalId":408015,"journal":{"name":"2011 RO-MAN","volume":"58 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Human-like action segmentation for option learning\",\"authors\":\"Jaeeun Shim, A. Thomaz\",\"doi\":\"10.1109/ROMAN.2011.6005277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots learning interactively with a human partner has several open questions, one of which is increasing the efficiency of learning. One approach to this problem in the Reinforcement Learning domain is to use options, temporally extended actions, instead of primitive actions. In this paper, we aim to develop a robot system that can discriminate meaningful options from observations of human use of low-level primitive actions. Our approach is inspired by psychological findings about human action parsing, which posits that we attend to low-level statistical regularities to determine action boundary choices. We implement a human-like action segmentation system for automatic option discovery and evaluate our approach and show that option-based learning converges to the optimal solutions faster compared with primitive-action-based learning.\",\"PeriodicalId\":408015,\"journal\":{\"name\":\"2011 RO-MAN\",\"volume\":\"58 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 RO-MAN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.2011.6005277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 RO-MAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2011.6005277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

机器人与人类伙伴进行交互学习有几个悬而未决的问题,其中之一是提高学习效率。在强化学习领域解决这个问题的一种方法是使用选项,临时扩展的动作,而不是原始的动作。在本文中,我们的目标是开发一个机器人系统,可以从人类使用低级原始动作的观察中区分有意义的选项。我们的方法受到关于人类行为解析的心理学发现的启发,它假设我们关注低级统计规律来确定行为边界选择。我们实现了一个类似人类的行为分割系统,用于自动选项发现,并评估了我们的方法,并表明基于选项的学习与基于原始行为的学习相比更快地收敛到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-like action segmentation for option learning
Robots learning interactively with a human partner has several open questions, one of which is increasing the efficiency of learning. One approach to this problem in the Reinforcement Learning domain is to use options, temporally extended actions, instead of primitive actions. In this paper, we aim to develop a robot system that can discriminate meaningful options from observations of human use of low-level primitive actions. Our approach is inspired by psychological findings about human action parsing, which posits that we attend to low-level statistical regularities to determine action boundary choices. We implement a human-like action segmentation system for automatic option discovery and evaluate our approach and show that option-based learning converges to the optimal solutions faster compared with primitive-action-based learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信