气象雷达极化分类的多元耦合方法

F. Yanovsky, A. Rudiakova, R. Sinitsyn
{"title":"气象雷达极化分类的多元耦合方法","authors":"F. Yanovsky, A. Rudiakova, R. Sinitsyn","doi":"10.1109/IRS.2016.7497371","DOIUrl":null,"url":null,"abstract":"The paper presents a multivariate copula approach to identify the dependence between different polarimetric parameters. This approach can be used to develop a new method of invariant polarimetric classification of radar targets. Signals from meteorological target are processed as an example.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"25 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multivariate copula approach for polarimetric classification in weather radar applications\",\"authors\":\"F. Yanovsky, A. Rudiakova, R. Sinitsyn\",\"doi\":\"10.1109/IRS.2016.7497371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a multivariate copula approach to identify the dependence between different polarimetric parameters. This approach can be used to develop a new method of invariant polarimetric classification of radar targets. Signals from meteorological target are processed as an example.\",\"PeriodicalId\":346680,\"journal\":{\"name\":\"2016 17th International Radar Symposium (IRS)\",\"volume\":\"25 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRS.2016.7497371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种多元耦合方法来确定不同偏振参数之间的相关性。该方法可为雷达目标的不变极化分类提供一种新的方法。以气象目标信号处理为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate copula approach for polarimetric classification in weather radar applications
The paper presents a multivariate copula approach to identify the dependence between different polarimetric parameters. This approach can be used to develop a new method of invariant polarimetric classification of radar targets. Signals from meteorological target are processed as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信