{"title":"利用LSTMs进行电力需求预测","authors":"A. Jeffee Jenson, S. Sowkarthikax","doi":"10.36548/jeea.2023.2.006","DOIUrl":null,"url":null,"abstract":"Electricity demand forecasting is an essential task in the energy industry, enabling utilities and energy suppliers to optimize the generation, transmission, and distribution of electricity. In recent years, deep learning techniques such as Long Short -Term Memory (LSTM) neural networks have shown great potential in improving the accuracy and efficiency of time-series forecasting tasks, including electricity demand forecasting. This research proposes an LSTM-based neural network architecture for short-term electricity demand forecasting. The proposed model is evaluated on real-world electricity demand data, and the results demonstrate its effectiveness in predicting future demand patterns. The model's performance is evaluated using the Mean Squared Error loss function and the Root Mean Squared Error metric. The proposed model shows promising results compared to traditional time-series forecasting models. The results suggest that LSTM-based neural networks can be a powerful tool for electricity demand forecasting, providing more accurate and efficient forecasting models that can help improve energy system planning and decision making.","PeriodicalId":383103,"journal":{"name":"Journal of Electrical Engineering and Automation","volume":"2 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity Demand Forecasting using LSTMs\",\"authors\":\"A. Jeffee Jenson, S. Sowkarthikax\",\"doi\":\"10.36548/jeea.2023.2.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity demand forecasting is an essential task in the energy industry, enabling utilities and energy suppliers to optimize the generation, transmission, and distribution of electricity. In recent years, deep learning techniques such as Long Short -Term Memory (LSTM) neural networks have shown great potential in improving the accuracy and efficiency of time-series forecasting tasks, including electricity demand forecasting. This research proposes an LSTM-based neural network architecture for short-term electricity demand forecasting. The proposed model is evaluated on real-world electricity demand data, and the results demonstrate its effectiveness in predicting future demand patterns. The model's performance is evaluated using the Mean Squared Error loss function and the Root Mean Squared Error metric. The proposed model shows promising results compared to traditional time-series forecasting models. The results suggest that LSTM-based neural networks can be a powerful tool for electricity demand forecasting, providing more accurate and efficient forecasting models that can help improve energy system planning and decision making.\",\"PeriodicalId\":383103,\"journal\":{\"name\":\"Journal of Electrical Engineering and Automation\",\"volume\":\"2 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jeea.2023.2.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jeea.2023.2.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electricity demand forecasting is an essential task in the energy industry, enabling utilities and energy suppliers to optimize the generation, transmission, and distribution of electricity. In recent years, deep learning techniques such as Long Short -Term Memory (LSTM) neural networks have shown great potential in improving the accuracy and efficiency of time-series forecasting tasks, including electricity demand forecasting. This research proposes an LSTM-based neural network architecture for short-term electricity demand forecasting. The proposed model is evaluated on real-world electricity demand data, and the results demonstrate its effectiveness in predicting future demand patterns. The model's performance is evaluated using the Mean Squared Error loss function and the Root Mean Squared Error metric. The proposed model shows promising results compared to traditional time-series forecasting models. The results suggest that LSTM-based neural networks can be a powerful tool for electricity demand forecasting, providing more accurate and efficient forecasting models that can help improve energy system planning and decision making.